The partial McKay correspondence

Ruth Mye (née Pugh) 6th May 2025

THE MANAGEMENT OF THE SECOND S

McKays ---> Conespondence

Tillingbundle Equivalence 20 on S of categories

D(cons)-30(End2-May)

Partial McKay Corespondence TAMMON OF WAR

Tiltingbundle Equivalence

X on X of categories

)x D'(coln 8) -> D'(End X-mal) Sx

·Quotients of C2 by McSL(2, C) fruite

ADE singularilies & partial rescillens

- ·Quotients of C2 by [CSL(2, C) finite
- $C^2/\Gamma := Spec(C[x,y]) = Spec(C[u,v,w]/f)$
- · 2 infinite families: (Ar), Dr & Correspond to

 · 3 exceptional cases: E6, E7, E8 cyclic.

- ·Quotients of C2 by [CSL(2, C) finite
- $C^2/n := Spec(C(x,y))$ Eq: $A_2 sing:$
- 2 infinite families: Ar, Dr
- · 3 exceptional cases: E6, E7, E8 C[u.v.w)(uv-w3)

00x101=

- . C/h has an isolated singularity at the origin.
- · Blow up to form minimal resolution S -> 0%.
- · Exceptional divisor has r P'curves

ADE singularities & partial resolutions resolutions resolutions

Exceptional divisor has r P'curves arranged:

Ar:

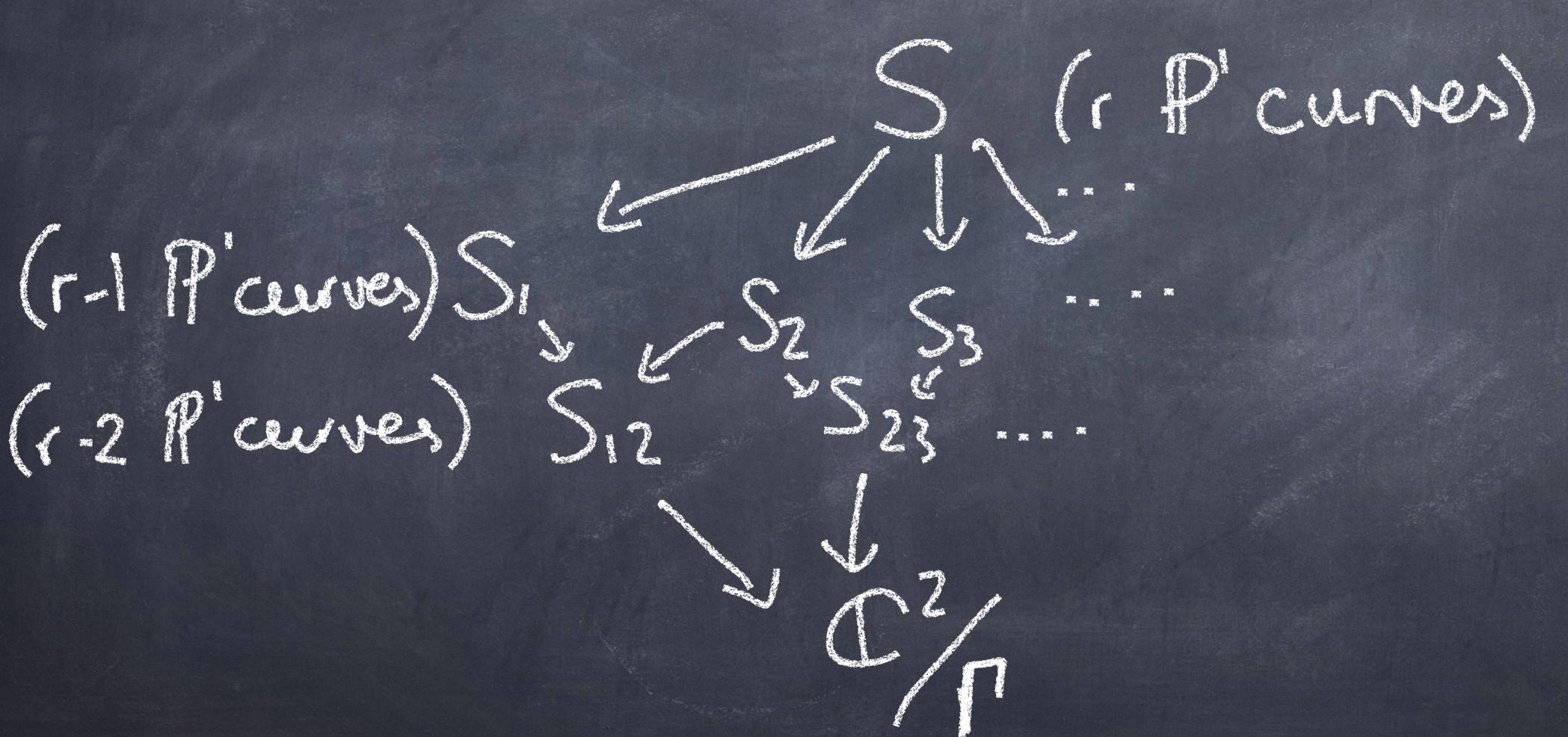
Dr:

23 72 72

E6: E8:

S (PONNO)

Siller Cunus (r) Panelon



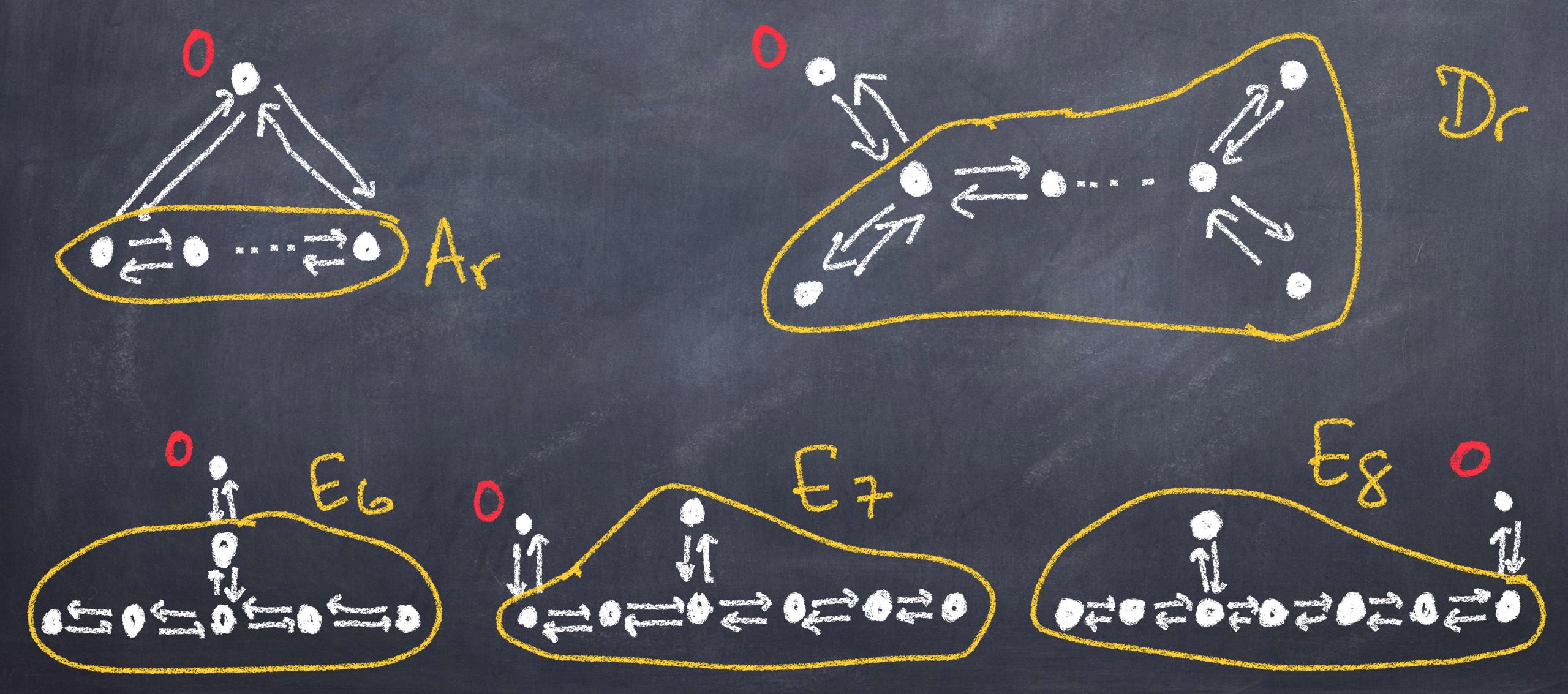
(r-1 P'curves) Si Sz Sz Sz

(r-2 P'curves) Siz Sz Sz

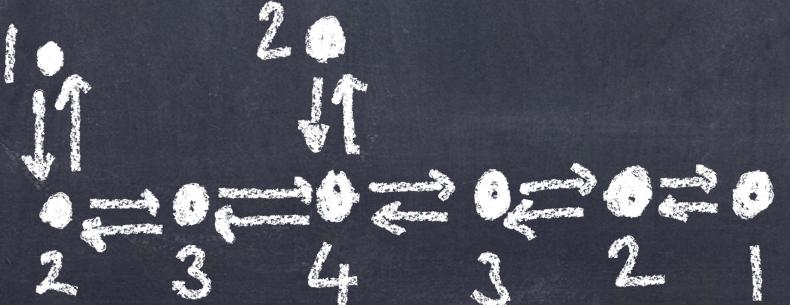
CILLICT VOTECES

CILLICT VOTECES

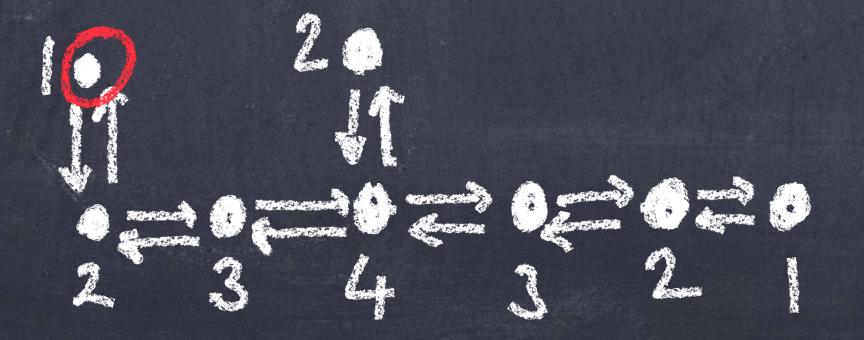
CILLUCT VOTECECS



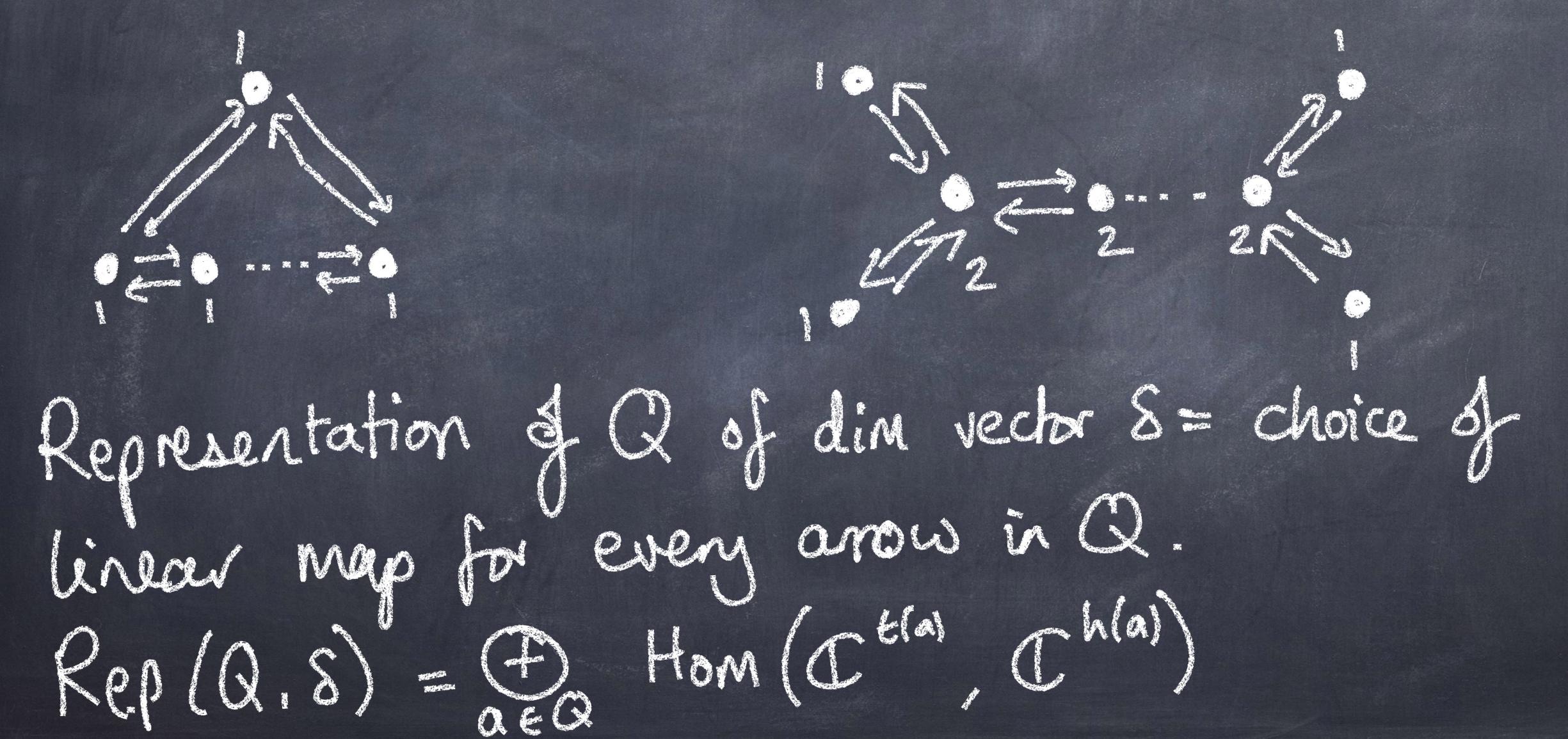
CELUCY VATICES



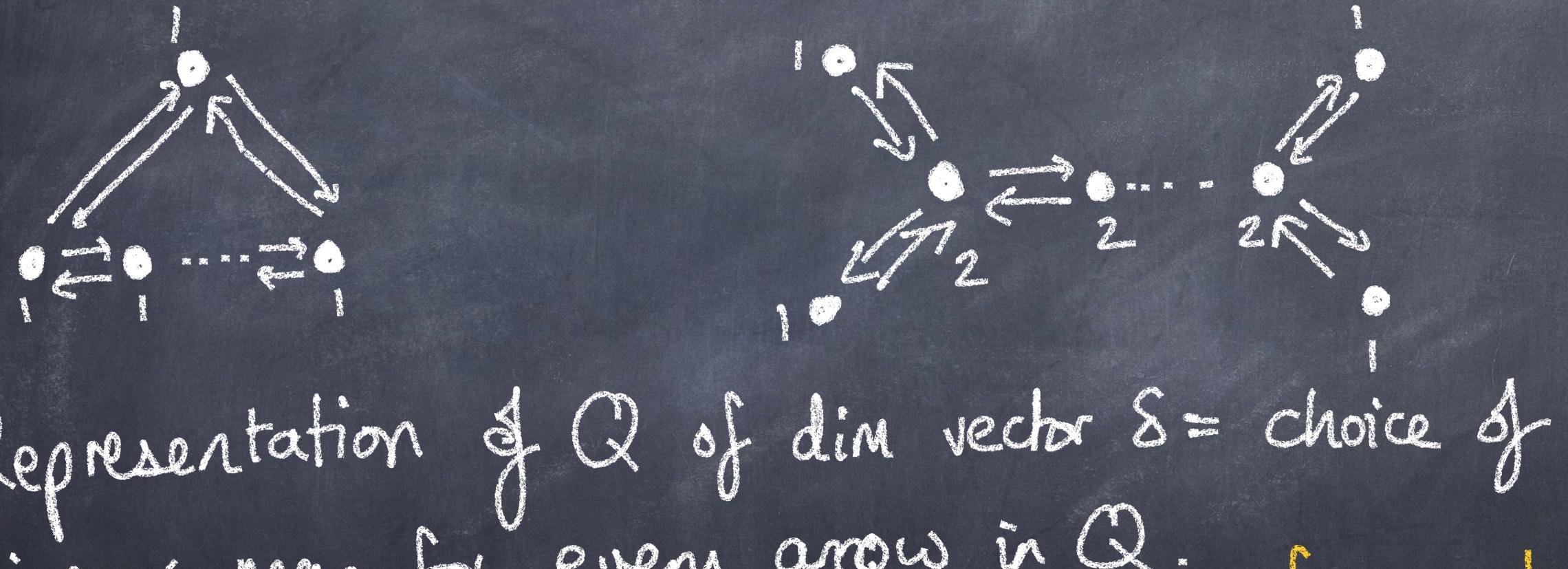
CALVET VATLE S



CILLIET VOTECLES



CULVET VOTLE LES

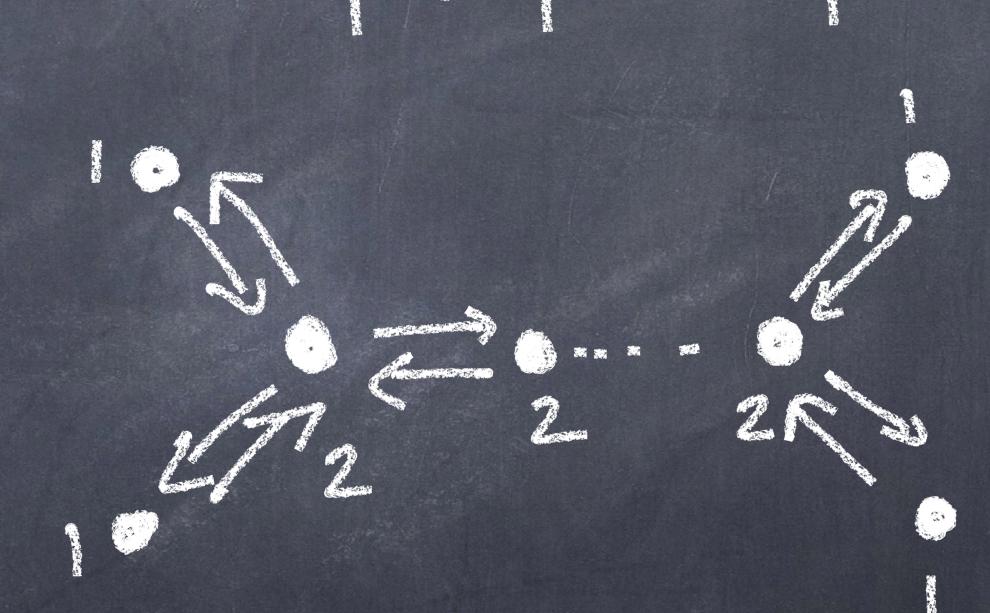


Representation of Q of dim vector S = choice of linear map for every arow in Q. fin. gen left Rep (Q.S) = \bigoplus Hom (\square that) = \ker modules

Rep(Tr,v) = Rep(Q,v)

Representations satisfying preparective relations

Modules over This RQL



CULLYCT VOTECLES

Stability condition DE ZZ (*1)

Quiver variety Mg (Tp. 8): parametrises O-semistable Tr-modules.

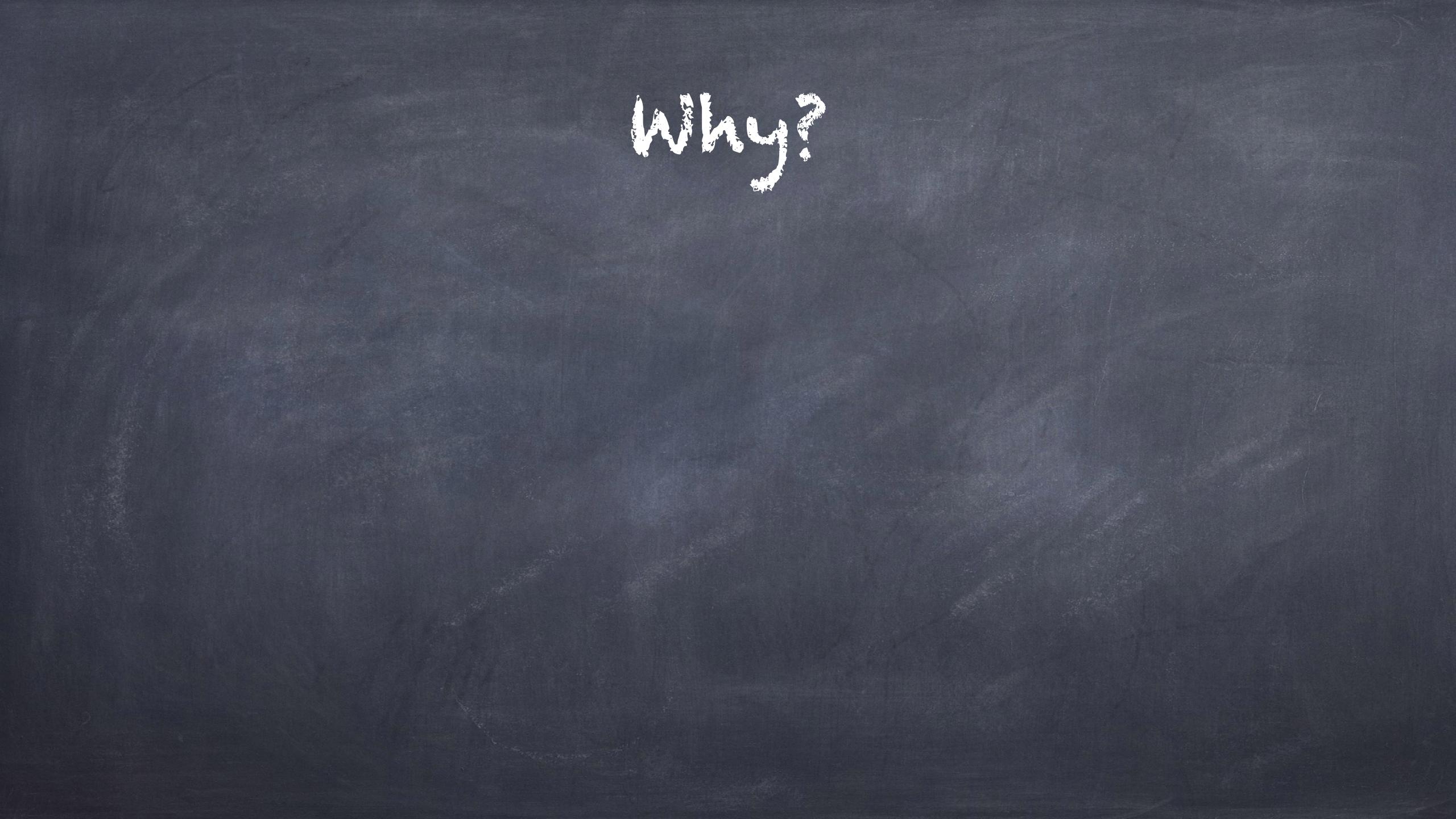
Mo (TTP, 8) = Rep(TTP, 8)/6 G(V)

CALVET VOTEELES

Stability condition QE ZZ(*)

Quiver variety Mg (TTP, 8): parametrises O-semistable TTP-modules.

- . Me is a Coase moduli space
- · If this generic, then Mo is a fire moduli space.



For generic Θ , $M_0(TTr, S) \cong S$, a fine moduli space, so S has a tautological bundle V. Important: D= Di, rank Di = dimpi: Si Nomaise: Do E Os

For generic Θ , $M_0(\pi_r, S) \cong S$, a fine moduli space, so S has a tautological bundle V. Important: $\mathcal{V} = \bigoplus_{i \in Q} \mathcal{V}_i$, rank $\mathcal{V}_i = \dim_{Q_i} : S_i$ Nomalise: Des Os Disamina [nd (2) = 11 m bundle on S.

TELECTOR DELICATION

- Da tilling object in D'(coh S) means:
- 1. Ext(2,2)=0 fx k =0
- 2. D'approter D'(con S)
- 3. Hom Os (2,-) commutes with direct sums.

Equivalence of calegories S projective over T/p (affine variety) nur Equivalence of derived categories given by RHom_{Os}(ν , -) and - $\delta \nu$

(Thin 7.6 of Hille - Van der Bergh 10)

Equivalence of calegories

Side note:

Baer. Bondal theorem: similar, but for projective X, our case is slightly more subtle as S is projective over affine The

What about 5

- . Sk not smooth for k + Ø.
- · $S_K \cong M_{\Xi}(Tr, S)$ but Ξ not generic, so no tautological bundle, so no tilting bundle...

What about 5, ?

- . Sk not smooth for k + Ø.
- · $S_K \cong M_{\Xi}(Tr, S)$ but $\stackrel{>}{>} not$ generic, so no tilting bundle, so no tilting

But there is a fix!

The fix—a different quiver Idea: 'Ignore' nodes of quiver corresponding to the contracted curves K. Let $J = \{0,1,...,13\} \setminus \{\text{so } 0 \in J \text{ always}\}$ Consider Do = DD; End Do = Th parths in The Starting and ending at nodes in 5.

The fix—a different auver Idea: 'Ignore' nodes of quiver corresponding to the contracted curves K. · Construct Q5 st RQ5/v = 11p La Delete line roders in K, add some exha amus. · New quiver variety $\mathcal{H}_{\chi}(\mathbb{T}_{r}^{3}, S_{5})$

The fix - a different quiver
$$S_K \cong M_{X_3}(T_F^3, S_3)$$
 (Craw-Yamagishi) for X_3 a generic stability condition.
So \exists a five moduli space description of S_K , and a tautological bundle on S_K , $T_3 = \bigoplus_{j \in J_j} S_{j,j}$.
Normalise: $T_0 \cong \mathcal{O}_{S_K}$

The fix - a different auiver Example: Az singularity, Si

The fix - a different auiver Example: Az singularity, S, Original quiver:

The fix - a different quiver Example: Az singularity, Si Original quiver: Ignore Muss wertex

The fix - a different autiver Example: Az singularity, Si app New quiver: Possible some amous possible avere are some more).

The fix - a different auiver Example: Az singularity, Si ago New quiver: 3 epimorphism RQT -> End(2/T)

The fix - a different auiver Example: Az singularity, S, OR New quiver: (4 $S_1 \cong \mathcal{M}_{(-1,1)}(RQ_3/L_1(1,1)), T_5 = T_6 \oplus T_2$

Key question 1s To a tilting bundle?

Key question 1s To a tilting bundle?

Does To play the same role as a tilting bundle and give us an equivalence of categories?

Draamsaanasta

An equivalence of categories

D'(coh (SN) <-> D'(End(12)-mod)

Putting together a proof Note: End()3)-modules = End(T3)-modules.

Pulling Logelher a proof Note: End (2)-modules = End (To)-modules. Helpful find? / -> X = Spec R projective

Corollary 3.2.8. Assume that \mathcal{P} is a projective generator for ${}^{p}\operatorname{Per}(Y/X)$. Put $A = \operatorname{End}_{Y}(\mathcal{P})$ and write ${}_{A}\mathcal{P}$ to emphasize the left A-structure on \mathcal{P} Then the functors $\operatorname{RHom}_{Y}({}_{A}\mathcal{P},-)$ and $-\overset{L}{\otimes}_{A}{}_{A}\mathcal{P}$ define inverse equivalences between $D^{b}(\operatorname{coh}(Y))$ and $D^{b}(A)$. These equivalences restrict to equivalences between ${}^{p}\operatorname{Per}(Y/X)$ and $\operatorname{mod}(A)$.

Pulling logether a proof Note: End (2)-modules = End (To)-modules. Helpful find? Sk-36/7 = Spec R projective

Corollary 3.2.8. Assume that \mathcal{P} is a projective generator for ${}^{p}\operatorname{Per}(Y/X)$. Put $A = \operatorname{End}_{Y}(\mathcal{P})$ and write ${}_{A}\mathcal{P}$ to emphasize the left A-structure on \mathcal{P} Then the functors $\operatorname{RHom}_{Y}({}_{A}\mathcal{P},-)$ and $-\overset{L}{\otimes}_{A}{}_{A}\mathcal{P}$ define inverse equivalences between $D^{b}(\operatorname{coh}(Y))$ and $D^{b}(A)$. These equivalences restrict to equivalences between ${}^{p}\operatorname{Per}(Y/X)$ and $\operatorname{mod}(A)$.

Pulling Logether a proof Note: End (2)-modules = End (To)-modules. 1s To a projective generator? Telena finds

Corollary 3.2.8. Assume that \mathcal{P} is a projective generator for ${}^p\operatorname{Per}(Y/X)$. Put $A = \operatorname{End}_Y(\mathcal{P})$ and write ${}_A\mathcal{P}$ to emphasize the left A-structure on \mathcal{P} Then the functors $\operatorname{RHom}_Y({}_A\mathcal{P},-)$ and $-\overset{L}{\otimes}_A{}_A\mathcal{P}$ define inverse equivalences between $D^b(\operatorname{coh}(Y))$ and $D^b(A)$. These equivalences restrict to equivalences between ${}^p\operatorname{Per}(Y/X)$ and $\operatorname{mod}(A)$.

Pulling logether a proof

If \mathcal{M} is a vector bundle of rank r on Y then by $c_1(\mathcal{M})$ we denote the class of $\wedge^r \mathcal{M}$ in Pic(Y).

Proposition 3.2.7. The projective generators in $^{-1}\operatorname{Per}(Y/X)$ are the objects \mathcal{M} in \mathfrak{V} such that $c_1(\mathcal{M})$ is ample and such that \mathcal{O}_Y is a direct summand of some $\mathcal{M}^{\oplus a}$. The projective generators in $^0\operatorname{Per}(Y/X)$ are the objects in \mathfrak{V}^* which are dual to projective generators in $^{-1}\operatorname{Per}(Y/X)$

So need. To EB

• C, (To) ample

• C, (To) ample

• Osh direct summand of some Topa

Pulling logether a proof SO reed ots 65 oc(13) ande · Osn direct summand of some TJO Osk = To, so Osk in a direct summand of To itself

Pulling logether a proof So reed of E (C.(TS) ande) c(Tj) = class of NdinpiTi = det Tj This is ample : it comes from an ample burdle on 1/5-stable locus

Pulling Logelher a proof So reed ots ES) - Oz direct survard of some Tito

Let \mathfrak{V} be the category of vector bundles \mathcal{M} on Y generated by global sections such that $H^1(Y, \mathcal{M}^*) = 0$ and let $\mathfrak{V}^* = \{\mathcal{M}^* \mid \mathcal{M} \in \mathfrak{V}\}.$

Pulling Logelher a proof So reed (To E B) and Company of the e Cadirect survand of some Tit

Let \mathfrak{V} be the category of vector bundles \mathcal{M} on Y generated by global sections such that $H^1(Y, \mathcal{M}^*) = 0$ and let $\mathfrak{V}^* = \{\mathcal{M}^* \mid \mathcal{M} \in \mathfrak{V}\}.$

Need H'(Sr, TJ)=0, To gen by global sections

Putting together a proof Need H'(Sr, Tj')=0, To gen by global sections

True as Tj u globally generated (Craw-Karmazm- Ho, Pop 2.3).

Putting together a proof Need H'(Sr, Tj')=0, To gen by global sections

More diticult.

True as Tju globally generated

(Craw-Karmazm- Ho, Pop 2.3).

H'(SK TJ) =?

Final stage(s)

$$H'(S_K, T_J) \cong E_{Xt}'(O_{S_K}, T_J')$$

 $\cong E_{Xt}'(T_J, O_{S_K})$
 $\cong \bigoplus_{j \in S} E_{Xt}'(T_j, O_{S_K})$

Simple.

FINAL SEAGES) Ext (Tj, Osk) = Ext (Tj, h*(Os)) for h: S -> SK birational resolution,
SK normal

Final stage(s)

Ext'(
$$T_j$$
, O_{SK}) \cong Ext'(T_j , $h_*(O_S)$)

for $h: S \to S_K$ birational resolution,

 S_K normal

 \cong Ext'($h^*(T_j)$, O_S)

by adjunction by ht and hos.

Final stage(s)

Ext'(
$$T_j$$
, U_{SK}) \cong Ext'(T_j , $h_*(U_S)$)

for $h: S \to S_K$ birational resolution,

 S_K normal

 \cong Ext'($h^*(T_j)$, U_S)

(Since $h^*(T_j) = V_j$) \cong Ext'(V_j , V_o)

Final stage(s)

Ext'(
$$T_j$$
, U_{SK}) \cong Ext'(T_j , $h_*(U_S)$)

for $h: S \to S_K$ birational resolution,

 S_K normal

 \cong Ext'($h^*(T_j)$, U_S)

(Since $h^*(T_j) = U_j$) \cong Ext'(V_j , V_o) $=$ O

CONCLASION

Corollary 3.2.8. Assume that \mathcal{P} is a projective generator for ${}^{p}\operatorname{Per}(Y/X)$. Put $A = \operatorname{End}_{Y}(\mathcal{P})$ and write ${}_{A}\mathcal{P}$ to emphasize the left A-structure on \mathcal{P} Then the functors $\operatorname{RHom}_{Y}({}_{A}\mathcal{P},-)$ and $-\overset{L}{\otimes}_{A}{}_{A}\mathcal{P}$ define inverse equivalences between $D^{b}(\operatorname{coh}(Y))$ and $D^{b}(A)$. These equivalences restrict to equivalences between ${}^{p}\operatorname{Per}(Y/X)$ and $\operatorname{mod}(A)$.

So Fan equivalence of categories
$$D^{6}(\cosh(S_{K})) \leftarrow S D^{6}(End(S_{S})-mod)$$
.

HESECTECAL MOEC

Known in the complete local carse by Karck-lyana-Weyness-Yang.

May ca I care Considered Hilb (SK). 4 subschemes of length 1 c SK, Z has structure sheaf OZ c SK. 1. Use the derived equivalence to obtain a The module associated to Uz. Prove particular properties of this module.

Miny do I core Considered Hilb (SK). 2. Use To to construct a bundle on Hilb (SK), To = par 9* (To) where p.9 are projection maps from the universal subscheme Zn Then describe the Net and morable come of Hilb (Sx) in terms of this bundle.

Thank you for Listening!

Questions?