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S Introduction

We work with smooth
, projective varieties/K.

Notation ab(X) = Db(Coh(XI)

General questio : What geometric data does Gb(X) "know" about X ?

Example: · dim X (i.e- 8b(X) = (b(y) = dim y = dim X .)
· b, (x) := rkH'(X

,2)
· HH(X)

Theorey [Orlor] · If # KX is ample ,
then 86(X) =11y) X=y-



Theorey [Orlor] · If # KX is ample ,
then 86(X) =11y) X=y-

If A is an Abelian variety ,
then 8b)A) = Cb/A4 even when A #A

(Recall : K *a)

Today : We will study D-equivalence for certain K-trivial varieties :

Def A K3 surface is a smooth
,
Iprojective) , 2-dimensional variety X S .

t.

1)ky = 0x
2) H(x,0x) = 0

. (f) +, (x) = 0)
.

T) 43 surfaces "usually" have non-trivial Fourier-Mukai partners.

For example :



& First examples of O-equivalent K3 surfaces

Set-up :

↑ an elliptic K3 surface (i. e .

M
is a smooth curve of g

=)

P Spec(k(y))

For Ger
,

we consider to an := the smooth curve parametrising
↓ line bundles of degree k on Xn.

Spec(k(y)

There is a unique relatively minimal surface JGX S . + . (EX)y = GExn

Tjbx is a K3 surface "godmultisection
· P index

Theorem [Mukai , Bridgeland ,
Caldararu]. ob(x) * 0b/X) (sometimes)-



& The Derived Torelli Theorem

& (kall = Eieob(y)
.

soa "parametrises"

3 Fourier-Mukai g: cob(x) = 29b(y)

partnership =>:X,
image ofskyscrapers 2b(X) = 5b(y)↓ D

universalTobject Y?

Moduli spaces of - Flodge structures on
Y

(complexes of Irational) cohomology
sheaves -T Ho(X

,&)= H(y, Q)

If Ec (b(XxY) universal
sheaf

,
then $50 : (% x) -> 00y)

might be an equivalence



Theorem
.

(Derived Torelli Theorem
,
[Mukai

, Orla]]

Let X
, Y be K3 surfaces . TFAE :

(i) Gob(x) = 2b(y)
(ii) #(x

,
2) * Fly , 2) (Hodge isometry).

(iii) y = M(r) for some -EN(X1 I well-chosen

Need to understand : a Hodge isometries

* Modeli of sheaves.



⑤ Moduli spaces of sheaves on K3 surfaces

Recall: It EoE@b(X) ,
the Mukai vector of E is

~ (3%:= ch(E) .Fe * /X
,
2) .

For a 13 surface : v(E - N(x) : = Ho(x
,
z)H"(x

,
z)0H4(X

,
a)

112 II 112

- 2 & Ns(X)

And : Ex = (1 ,
0

, 1).

Examples : · neX closed : v(ka)) = 10 ,
0

,
1)

· Ox(D)ePick) : v(0x(D)) = (1 ,
D, B2)

· Fecoh() : (f) = Luke, ge,
E-2(F)



Def [Mukai] For DEN(X) (effective), we denote

r(t) : =( + Coh(x))vIF) = u]

() I'm ignoring something important : stability (

Theorem.

[Mukai
, Gottsche-Huybrechts , O'Grady , Yoshioka]

Ifa effective
, primitive (i . e. ZEN() => n = 11) . Then M() is a

smooth
, projective hyperkahler variety that is deformation equivalent to a

Hilbert scheme of points on a 13 surface. Moreover,
dim M(v) = 22 + z

Hence M(U) is a K3 surface if uz = 0.

p .
S . N/X) has an integral bilinear form NIX)xN(X) - *

given by &
(0

,
D

,
0) · (0

,
E

,
0) = D . E 102 means w .e)

(r, 0
, 5) - (r , 0

,
5) = - rs' - rs.



⑤Example

Recall : For
X elliptic k3

,
we have jkx parametrising line burtson

-

supported on the Fibres & having degree t there-

#We have jex = r(0
,
F

,
b)

& class of the Fibreof
Q
.
For which v is (2) a fire moduli space

?

(Important because M/V) is fine # Juniversal sheaf FeCoh(xxM(w). )

A [Mukai ,
Caldararu

,
Mattei-M]

M(u) is Eine div(z) : Ged (w . ) =1.
X dir (F)

xEN(X)
ged(k, div F) =

gcd(k,
t)

·

↓
#↳tex finegod= 1



G Hodge isometiegs.

Recall; /X,
2) has a bilinear form v : +/X

,
() x +(x

, 2)+ 2

and we can extend it to H
*

/X
, 2)

= Ho(X
,
2) H(X

,
2)0H"(X

, a)

by (1 ,
0
,
01 · (0

,
0
, 1) = - 1.

I

And-H2(X
,
() = Hi 2(X)0nH" (x) + +40(X) ou

& A I 20 I

both 1- dimensional O j

I

&
Deff A Hodge isometry is a group homomorphism H2(X

,
2) = H2X

,
2)

that respects both the bilinear form and the Hodge structure.

Ei
. e. FuYy),



Theorem (Torelli Theorem for K3 surfaces) .
X = Y ( H(X

,
2) = H(Y,2)

1 and DERIVED Torelli says Cob(X) = Ob(y) () H* /X
,
2) = H

* (y,2)

Hence we can "construct" a K3 surface by specifying a "suitable" Hodge lattice-

For example .
If vE N(X) effective

, primitive,
what is (M(V), *) ?

Theorem
,

[Mukai]. Let F Coh(XXM(V) be a cquasi-universal sheaf. Then

the cohomological FM transform

v()

&: H
* (X

, a) - H*(M(v)
,
a)

induces a Hodge isometry** H(MIM)
,
2).



Sproof of the Derived Torelli Theorem

1. ab(x) = ab(y) = #(X
,
2) = F(y,

7)

Is because GWE) maps integral classes to integral classes /computation

2· (b(x) = x(y) = y = M(0)

Let 7 : #(X
,

2) = #(4
,
2) be a Hodge isometry . Let v = =" (0, 0

, 1)

Then
v 10,0

, 1)

#(X
,
2) = T(y

,
2)

ub = 10 ,
0

, 11
*

= +/Y
,
2)0210,

0
,

1)

Hm
,2)=u

= 10,
0

, 11/
. 10, 0

, 1)
* H(4

,
2)

3. 4 = M(u) = 0b(x) =0b(y)

The universal sheaf is the kernel of a Fr equivalence



Conclusion. The three aspects are all equally important.

FM partners of
k3 surfaces

univers e cohomological- ↑ Frtransformse

Torelli &
Fine moduli spaces - Hodge isometries of
of sheaves H2(r(v),2) integral Hodge structures

= 07/0



3 But what about the non-fine moduli spaces ?

Recall; M(v) is fine < divv = gclv .w =

More generally : T(x)4u)π(x,
x)(+(x) = = N(X)-F(x

,2)

↳ = +/(0)
,
2)

o + T(x) -T(MN) /divir). - O

I) For a 13 surface X
,

we have Br(x) = Hom(T(X) , Q(x)

so xEBr(M(r)

Deff a is the obstruction to the existence of a universal sheaf on Xx M(V).

↑hm
-

We have ob(X) = Db(M(V)
,
a)

Cor ab(x) = cobly)( T(x) = T(y)



⑤ Application : Ogg-Shafarevich Theory

It & elliptic K3 with a section,the

N(S) = Br(S
112

= Hom1T(s)
,
C/2)

X
- * o obstruction class

T

And therefore her (x : T(S) - Q(2) = T(x)

#jgkx = jx , s [qx] er(s)

Thm[Caldararu] . N(S) - BrIS

X m xx

jkx - k.
x



Corr Since Ajax =
K.

x ,
we have

2b(x) = 0b(yky) T(x) = T(j(x)( frxx = berk.
x

= gcd(k ,
(xx1) = 3 .

Now; what is Ixx1 ?

Recall; 0 - +(x) - T(gX) = Eldirlite ->

where v = 10,
F

,
0) . Thus : divil = dirF = t

↳
sob(x) = ab(gk(x)) gcd(k,

+) = 3.

Q; Are all Fr partners of X isomorphic to some jbx ?
# [m-Shinder]. No

.


