Derived autoequivalances on algebraic Flops.

Preamble: <u>DW1</u>: -defines a new "invariant" the noncommutative deformation algebra called the <u>contraction algebra</u> Acon associated to any contractible rational curve in any 2-fold. <u>- Exploits</u> this invariant to give the first intrinsic description of a derived autoequivalence associated to a general flopping curve.

August: - for any f: U -> speck, where speck is a complete local isolated CDV singularity, it's proven that all the associated contraction algebras are derived equivalent ~ the corresponding derived category is an invariant of the singularity spec R.

DW3: In the setting of August above, two combinatorial Objects: a finite hyperplane arrangement H and an infinite hyperplane arrangement Haff can be associated to the flopping conduction f: U-speck

Definitions: 1. A flop is a commutative diagram X - - - 9 - - -> xt f" f* where are small projective biriational morphisms, and the canonical bundles are trivial over Y.

2. We will refer ft as flopping contractions. Goal. Let X - X can be a global 3-fold flopping conduction, where X is quasi projective and has only mild singularities: Diagramatically Use this to define autoequivalences Db (Cohx) - Db (Cohx). We work through the following set ups, then globalise these to the global setup. 1. Zariski local set up: Suppose that f: U -> spec R an algebraic flopping contraction which is an isomorphism away from precisely one point me Max R. Also SPEC R assume U has mild singularities. where UCX, U has mild singularities.

By [VdB], it is well known that there exists a tilting bundle $U = O_{U} \oplus N$ on U that induces a derived equivalence

2. Complete local setup:

* From the Lariski local set up $\Lambda = \operatorname{End}_{\mathcal{R}}(\mathcal{R} \oplus f_*\mathcal{N})$, after completing $\hat{\Lambda} = \operatorname{End}_{\hat{\mathcal{R}}}(\hat{\mathcal{R}} \oplus f_*\mathcal{N})$. Set $A = \operatorname{End}_{\hat{\mathcal{R}}}(\mathcal{N})$ where $\mathcal{N} = \hat{\mathcal{R}} \oplus f_*\mathcal{N}$.

* From preamble, we can associate
$$\mathcal{H}$$
 or \mathcal{H}^{aff} to $\hat{f}: \hat{\mathcal{U}} \longrightarrow \text{spec}\hat{\mathcal{R}}$

* Let $\alpha: C_{f} \rightarrow D$ be an atom from a choosen chamber C_{f} to another Chamber D in \mathcal{F} or \mathcal{F}^{aff} . For some wall i of D there is a monodromy around i.

* We can associate an algebra
$$B := \operatorname{Erd}_{2}(N_{b})$$
 to the chamber D where
ND is some module obtained by crossing the world i . We write
 $\Phi_{a}: D(\operatorname{Erd}_{2}(N)) \longrightarrow D^{b}(\operatorname{Erd}_{2}(N_{b}))$ for the associated
derived equivalence (also known as mutation)
* B interits run idompotent e_{i} corresponding to the worlds of D , thus
there is aring homomorphism $B \longrightarrow B_{i}$ worth $B_{i} = B$
 $1 - e_{i}$
* For $f: U \longrightarrow \operatorname{Spec} R$, to construct an autoequivalence on U associated
to the above monodromy. We consider Λ , that is derived equivalent
to U and construct the functor diagram
 $\Psi_{a}: D(e_{i}) \xrightarrow{\Psi_{a}} D(A) \xrightarrow{F} D(A) \xrightarrow{F} D(A)$
 $\Psi_{a}: D(A) \xrightarrow{F} D(A) \xrightarrow{F} D(A) \xrightarrow{F} D(A)$
 $\Psi_{a}: D(A) \xrightarrow{F} D(A) \xrightarrow{F} D(A) \xrightarrow{F} D(A)$

Theorem: For any choice of (a,i), Ca,i is a two-sided tilting complexe, giving rise to the autoequivalence Twistmin of D'(mod N). t Let $f: U \longrightarrow \operatorname{spec} R$ be an algebraic flopping contraction, then WE KNOW ' $B(\cosh u) \xrightarrow{\Lambda := R Hom_u(\mathcal{D}_{i-})} D(mod \Lambda)$ J.RA We define a functor GeoTwistaic b(conu) RHOM(2,-)> Db(mod N) Twistait B(Cohu) 2 Bh Z B (mod N) * GeoTwisha, i is composition of equivalences. * For the global flopping contraction $X \longrightarrow X_{con}$, to construct an autoequivalence, choose an affine open subset Spec R of Xcon containing only one point PK and set "I to be its preimage such that. SPEC R X

tion is covered by finitely affine open subsets, we combine the auto equivalences on U; to give an autoequivalence on X. $B(Q \operatorname{con} X) \longrightarrow B(Q \operatorname{con} X).$ # there are lots of the (Cohx)

