Categorical Torelli theorems for Fano threefolds Augustinas Jacovskis University of Luxembourg

Fano threefolds

Let X be a smooth Fano threefold with Pic $X = \mathbf{Z} \cdot H$. These are classified by their

- index: $K_X = -\iota_X H$, and
- degree: $d = H^3$.

$K_{X} = -H$		$K_X = -2H$	
d	SOD	d	SOD
22		5	
18		4	
16			
14		3	$\mathrm{D^b}(X) = \langle \mathcal{A}_X, \mathcal{O}_X, \mathcal{O}_X(1) \rangle$
12			
10	$\mathrm{D^{b}}(X) = \langle \mathcal{A}_{X}, \mathcal{O}_{X}, \mathcal{E}^{\vee} \rangle$	2	
8			
6		1	
4			
2	$\mathrm{D^{b}}(X) = \langle \mathcal{A}_{X}, \mathcal{O}_{X} \rangle$		

Theorem (Bondal–Orlov)

$$\mathrm{D^b}(X)\simeq\mathrm{D^b}(X')\implies X\simeq X'.$$

Motivation

Example

Let $X \subset \mathbf{P}^4$ be a cubic threefold. Then $D^{\mathrm{b}}(X) = \langle \mathcal{A}_X, \mathcal{O}_X, \mathcal{O}_X(1) \rangle$ where $\mathcal{A}_X = \{ E \in D^{\mathrm{b}}(X) \mid \mathsf{Hom}^{\bullet}(\mathcal{O}_X, E) = \mathsf{Hom}^{\bullet}(\mathcal{O}_X(1), E) = 0 \}$

is the Kuznetsov component.

Natural question

Does A_X determine X up to isomorphism?

Motivation

For cubic threefolds, the answer is yes.

Theorem (Bernardara–Mehrotra–Macri–Stellari)

 $\mathcal{A}_X \simeq \mathcal{A}_{X'} \implies X \simeq X'.$

Proof idea.

- Consider moduli spaces of Bridgeland stable objects in A_X. We get M_σ(A_X, [I_ℓ]) ≃ Hilb_ℓ(X).
- An equivalence $A_X \simeq A_{X'}$ induces an isomorphism of the corresponding moduli spaces, hence an isomorphism of the Hilbert schemes of lines.
- $J(X) = Alb(Hilb_{\ell}(X))$
- Hence $J(X) \simeq J(X')$
- Hence $X \simeq X'$ by the classical Torelli theorem for cubic threefolds due to [Clemens–Griffiths, Tyurin].

Question

What about the other Fano threefolds?

Gushel-Mukai (GM) threefolds

Let X be a Fano threefold with Pic $X = \mathbf{Z} \cdot H$, $d = H^3 = 10$, and $K_X = -H$. Then $X = Gr(2,5) \cap (quadric) \cap \mathbf{P}^7$

or

X = double cover of $Gr(2,5) \cap \mathbf{P}^6$ branched in a quadric hypersurface

and it has an SOD $D^{b}(X) = \langle \mathcal{A}_{X}, \mathcal{O}_{X}, \mathcal{E}^{\vee} \rangle$ where \mathcal{E} is the restriction of the tautological bundle on Gr(2,5).

Question

 $\mathcal{A}_X \simeq \mathcal{A}_{X'} \implies ??$

Moduli of stable objects in \mathcal{A}_X

Lots is known classically about *conics* $C \subset X$ on GM threefolds, so let's consider $M_{\sigma}(\mathcal{A}_X, [\operatorname{pr}(I_C)])$.

Lemma (J.–Lin–Liu–Zhang)

 $M_{\sigma}(\mathcal{A}_X, [\operatorname{pr}(I_{\mathcal{C}})]) \simeq \text{minimal surface of } \operatorname{Hilb}_{\mathcal{C}}(X) =: \operatorname{mHilb}_{\mathcal{C}}(X)$.

Proof idea.

- Certain $I_C \in Hilb_C(X)$ are s.t. $I_C \in A_X$. Others are s.t. $I_C \notin A_X$.
- In all cases, $pr(I_C) \in A_X$ are Bridgeland stable.
- There is a $L \simeq \mathbf{P}^1$ of conics in $\operatorname{Hilb}_C(X)$ s.t. $I_C \notin \mathcal{A}_X$.
- pr: $D^{\mathrm{b}}(X) \to \mathcal{A}_X$ induces a map p: $\mathrm{Hilb}_{\mathcal{C}}(X) \to M_{\sigma}(\mathcal{A}_X, [\mathrm{pr}(I_{\mathcal{C}})]).$
- L is contracted to a point by p.
- It follows that M_σ(A_X, [pr(I_C)]) ≃ mHilb_C(X).

Birational categorical Torelli for GM threefolds

Theorem (JLLZ)

$$\mathcal{A}_X \simeq \mathcal{A}_{X'} \implies X \sim_{\mathrm{bir}} X'.$$

Proof idea.

- Suppose $\Phi \colon \mathcal{A}_X \to \mathcal{A}_{X'}$ is an equivalence.
- Where does Φ map $M_{\sigma}(\mathcal{A}_X, [\operatorname{pr}(I_C)])$?
- For numerical reasons, either

•
$$\Phi(M_{\sigma}(\mathcal{A}_X, [\operatorname{pr}(I_C)])) \simeq M_{\sigma}(\mathcal{A}_{X'}, [\operatorname{pr}'(I_{C'})])$$
 or

- $(M_{\sigma}(\mathcal{A}_{X}, [\operatorname{pr}(I_{C})])) \simeq M_{\sigma}(\mathcal{A}_{X'}, \text{certain other class})$
- Hence,

1 mHilb_C(X) \simeq mHilb_C(X') or

2 mHilb_C(X) \simeq mHilb_C(certain birational transformation of X')

• Classical results due to [Debarre–Iliev–Manivel] + [Logachev] give $X \sim_{\text{bir}} X'$ in both cases.

Another Fano threefold

Now let X be a Fano threefold with Pic $X = \mathbf{Z} \cdot H$, $K_X = -H$, and $d = H^3 = 2$. These are double covers of \mathbf{P}^3 branched in a sextic hypersurface Z. They have SODs $D^{\mathrm{b}}(X) = \langle \mathcal{A}_X, \mathcal{O}_X \rangle$.

Question: Can we do the same thing as before?

Remark

Due to a technical issue re: stability conditions on A_X in this case, it's not clear whether the previous method is possible.

An equivariant approach

Recall that $X \to \mathbf{P}^3$ is a double cover branched in a sextic hypersurface, with $D^{\mathrm{b}}(X) = \langle \mathcal{A}_X, \mathcal{O}_X \rangle$. So there's an action of $\mu_2 = \{1, -1\}$ on X.

Consider the *equivariant derived category* of X w.r.t this action:

$$\mathrm{D^b}([X/\mu_2])\simeq \,\mathrm{D^b}(X)^{\mu_2}=\langle \mathcal{A}^{\mu_2}_X,\mathcal{O}^{\mu_2}_X
angle.$$

There is a theorem [Collins–Polishchuk, Ishii–Ueda, Kuznetsov–Perry] which gives *another* SOD for such covers, in terms of the *base* and *branch locus Z*.

Shuffling the two SODs around gives

Lemma (Dell–J.–Rota) $\mathcal{A}_{X}^{\mu_{2}} = \langle \mathrm{D}^{\mathrm{b}}(Z), exceptional \rangle.$

Another categorical Torelli theorem

Theorem (DJR, Lin-Zhang)

Let X be very general and $\Phi: \mathcal{A}_X \simeq \mathcal{A}_{X'}$ be Fourier–Mukai. Then $X \simeq X'$.

Proof idea.

- Begin with an equivalence $\Phi: \mathcal{A}_X \simeq \mathcal{A}_{X'}$.
- This descends (!) to an equivariant equivalence $\Phi^{\mu_2} : \mathcal{A}_X^{\mu_2} \simeq \mathcal{A}_{X'}^{\mu_2}$.
- Consider the topological K-theory $K_0^{\text{top}}(\mathcal{A}_{\chi}^{\mu_2})$. One can put a Hodge structure on this. Furthermore, one can show $K_0^{\text{alg}}(\mathcal{A}_{\chi}^{\mu_2})^{\perp} \simeq H_{\text{prim}}^2(Z, \mathbf{Q})$ (which preserves the Hodge structure).
- Thus Φ^{μ_2} induces a Hodge isometry $H^2_{\text{prim}}(Z, \mathbf{Q}) \simeq H^2_{\text{prim}}(Z', \mathbf{Q})$.
- Classical Torelli [Donagi] $\implies Z \simeq Z' \implies X \simeq X'.$

Thank you!