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Overview

• Introduction to matrix factorizations

• Motivation for Knörrer periodicity

• Examples with flips / flops

• (+ hopefully more contextual comments as we go)
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Matrix factorizations in the wild

(Eisenbud ’80) Hypersurface singularities: eventually 2-periodic free resolutions, by

matrices factoring the equation.

• Stable part: matrix factorization (↔ maximal Cohen-Macaulay module)

• Leftover: bounded complex of frees, i.e. Perf
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Domesticated matrix factorizations

For a function W on a variety X , we want to define a (‘derived’ dg-/triang.) category

MF(X ,W ) of matrix factorizations, with MF(X , 0) = Db(X ).

Attempt
An MF of W is a “chain complex” in Coh(X ) with d2 = W · id instead of zero.

Problem
There is no such thing: deg(d2) = 2 ̸= 0 = deg(W · id).

Solution (Z-graded)
Grading data: non-trivial C∗-action on X s.t. W has weight 2 (and ±1 acts trivially).

An MF of W is a C∗-equivariant coherent sheaf with an endomorphism d of weight 1

s.t. d2 = W · id.

Gives a dg-category, same ‘deriving’ process as before to get MF(X ,W ).

• Forgetful functor to Z/2-graded version from ±1-eigendecomposition.

• Recovers Db(X ) from trivial grading data when W = 0.

Grading is a headache!
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Functors and Kernels

Most things that work for Db(X ) work for MF(X ,W ) in the same way.

Derived functors (with usual boundedness caveats):

• π∗ : MF(Y ,W ) → MF(X , π∗W ), π∗ : MF(X , π∗W ) → MF(Y ,W )

• MF(X ,W )⊗MF(X ,W ′)
−⊗−−−−−→ MF(X ,W +W ′)

Functors MF(X ,W ) → MF(Y ,V ) from FM kernels in MF(X × Y ,V −W ).

Example

Take E = (O
x
⇄
y

O[1]) in MF(A2, xy) with Z/2-grading. Then

Hom(E, E) = E∨ ⊗ E =

 O2 O2[1]

x −x

y −y


y −x

y −x



 ,

an object in MF(A2, xy − xy) = Db,Z/2(A2) quasi-isomorphic to O/(x , y), so

RHom(E, E) = RΓ(O/(x , y)) = C.
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Relation to singularities

Recall for hypersurface singularities: eventually 2-periodic resolutions; an MF then a

bounded complex.

For smooth X , the Z/2-graded MF(X ,W ) is equivalent to Orlov’s derived category of

singularities DSg({W = 0}) := Db({W = 0})/Perf({W = 0}).

Fact: DSg only depends on a Zariski neighbourhood of the singular locus, so

MF(X ,W ) only depends on a Zariski neighbourhood of Crit(W ). Almost only on

formal neighbourhood (need idempotent completion).

MF(X ,W ) is “like” Db(Crit(W )), but this is only true on the nose for quadratic order

singularities.

5
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Classical Knörrer periodicity

Fact: MF(A2, xy) ≃ Db(pt) generated by E = (O
x
⇄
y

O[1]).

Put it in a constant family:

Classical K.P. MF(X × A2,W + xy) ≃ MF(X ,W ). (Knörrer ’87)

He was studying f (x , y) + z21 + · · ·+ z2n , found 2-periodicity (above), and almost

1-periodicity:

MF(An+1,F + z2) → MF(An × [A1/{±1}],F + z2) ≃ MF(An,F ).

6

calum
Pencil



Classical Knörrer periodicity

Fact: MF(A2, xy) ≃ Db(pt) generated by E = (O
x
⇄
y

O[1]).

Proof. We computed earlier that E is exceptional.

Remains to check that

E ⊗ RHom(E,−) : MF(A2, xy) → MF(A2, xy) is trivial. The FM kernel is

(π∗
1 E)∨ ⊗ π∗

2 E =

 O2 O2

x2 −x1

y1 −y2


y2 −x1

y1 −x2



 ∈ MF(A4, x2y2 − x1y1);

I want this to be quasi-isomorphic to (O∆ ⇄ 0) ∈ MF(A4, x2y2 − x1y1).

Put it in a constant family:

Classical K.P. MF(X × A2,W + xy) ≃ MF(X ,W ). (Knörrer ’87)

He was studying f (x , y) + z21 + · · ·+ z2n , found 2-periodicity (above), and almost

1-periodicity:

MF(An+1,F + z2) → MF(An × [A1/{±1}],F + z2) ≃ MF(An,F ).

6



Classical Knörrer periodicity

Fact: MF(A2, xy) ≃ Db(pt) generated by E = (O
x
⇄
y

O[1]).

Proof. We computed earlier that E is exceptional. Remains to check that

E ⊗ RHom(E,−) : MF(A2, xy) → MF(A2, xy) is trivial.

The FM kernel is

(π∗
1 E)∨ ⊗ π∗

2 E =

 O2 O2

x2 −x1

y1 −y2


y2 −x1

y1 −x2



 ∈ MF(A4, x2y2 − x1y1);

I want this to be quasi-isomorphic to (O∆ ⇄ 0) ∈ MF(A4, x2y2 − x1y1).

Put it in a constant family:

Classical K.P. MF(X × A2,W + xy) ≃ MF(X ,W ). (Knörrer ’87)

He was studying f (x , y) + z21 + · · ·+ z2n , found 2-periodicity (above), and almost

1-periodicity:

MF(An+1,F + z2) → MF(An × [A1/{±1}],F + z2) ≃ MF(An,F ).

6

calum
Pencil



Classical Knörrer periodicity

Fact: MF(A2, xy) ≃ Db(pt) generated by E = (O
x
⇄
y

O[1]).

Proof. We computed earlier that E is exceptional. Remains to check that

E ⊗ RHom(E,−) : MF(A2, xy) → MF(A2, xy) is trivial. The FM kernel is

(π∗
1 E)∨ ⊗ π∗

2 E =

 O2 O2

x2 −x1

y1 −y2


y2 −x1

y1 −x2



 ∈ MF(A4, x2y2 − x1y1);

I want this to be quasi-isomorphic to (O∆ ⇄ 0) ∈ MF(A4, x2y2 − x1y1).

Put it in a constant family:

Classical K.P. MF(X × A2,W + xy) ≃ MF(X ,W ). (Knörrer ’87)

He was studying f (x , y) + z21 + · · ·+ z2n , found 2-periodicity (above), and almost

1-periodicity:

MF(An+1,F + z2) → MF(An × [A1/{±1}],F + z2) ≃ MF(An,F ).

6



Classical Knörrer periodicity

Fact: MF(A2, xy) ≃ Db(pt) generated by E = (O
x
⇄
y

O[1]).

Proof. We computed earlier that E is exceptional. Remains to check that

E ⊗ RHom(E,−) : MF(A2, xy) → MF(A2, xy) is trivial. The FM kernel is

(π∗
1 E)∨ ⊗ π∗

2 E =

 O2 O2

x2 −x1

y1 −y2


y2 −x1

y1 −x2



 ∈ MF(A4, x2y2 − x1y1);

I want this to be quasi-isomorphic to (O∆ ⇄ 0) ∈ MF(A4, x2y2 − x1y1).

Koszul:

 O O2 O
(y1−y2,x2−x1)

T (x1−x2,y1−y2)

1
2
(x1+x2,−(y1+y2))

1
2
(y1+y2,x1+x2)

T

 q.i.
≃ O∆.

Put it in a constant family:

Classical K.P. MF(X × A2,W + xy) ≃ MF(X ,W ). (Knörrer ’87)

He was studying f (x , y) + z21 + · · ·+ z2n , found 2-periodicity (above), and almost

1-periodicity:

MF(An+1,F + z2) → MF(An × [A1/{±1}],F + z2) ≃ MF(An,F ).

6



Classical Knörrer periodicity

Fact: MF(A2, xy) ≃ Db(pt) generated by E = (O
x
⇄
y

O[1]).

Proof. We computed earlier that E is exceptional. Remains to check that

E ⊗ RHom(E,−) : MF(A2, xy) → MF(A2, xy) is trivial. The FM kernel is

(π∗
1 E)∨ ⊗ π∗

2 E =

 O2 O2

x2 −x1

y1 −y2


y2 −x1

y1 −x2



 ∈ MF(A4, x2y2 − x1y1);

I want this to be quasi-isomorphic to (O∆ ⇄ 0) ∈ MF(A4, x2y2 − x1y1).

Koszul:

 O2 O2

 x1−x2 y1−y2

(x1+x2)/2 −(y1+y2)/2


(y1+y2)/2 y1−y2

(x1+x2)/2 x2−x1




q.i.
≃ (O∆ ⇄ 0).

Put it in a constant family:

Classical K.P. MF(X × A2,W + xy) ≃ MF(X ,W ). (Knörrer ’87)

He was studying f (x , y) + z21 + · · ·+ z2n , found 2-periodicity (above), and almost

1-periodicity:

MF(An+1,F + z2) → MF(An × [A1/{±1}],F + z2) ≃ MF(An,F ).

6



Classical Knörrer periodicity

Fact: MF(A2, xy) ≃ Db(pt) generated by E = (O
x
⇄
y

O[1]).

Proof. We computed earlier that E is exceptional. Remains to check that

E ⊗ RHom(E,−) : MF(A2, xy) → MF(A2, xy) is trivial. The FM kernel is

(π∗
1 E)∨ ⊗ π∗

2 E =

 O2 O2

x2 −x1

y1 −y2


y2 −x1

y1 −x2



 ∈ MF(A4, x2y2 − x1y1);

I want this to be quasi-isomorphic to (O∆ ⇄ 0) ∈ MF(A4, x2y2 − x1y1).

Koszul:

 O2 O2

 x1−x2 y1−y2

(x1+x2)/2 −(y1+y2)/2


(y1+y2)/2 y1−y2

(x1+x2)/2 x2−x1




q.i.
≃ (O∆ ⇄ 0).

These are isomorphic by a linear change of coordinates.

Put it in a constant family:

Classical K.P. MF(X × A2,W + xy) ≃ MF(X ,W ). (Knörrer ’87)

He was studying f (x , y) + z21 + · · ·+ z2n , found 2-periodicity (above), and almost

1-periodicity:

MF(An+1,F + z2) → MF(An × [A1/{±1}],F + z2) ≃ MF(An,F ).

6

calum
Pencil



Classical Knörrer periodicity

Fact: MF(A2, xy) ≃ Db(pt) generated by E = (O
x
⇄
y

O[1]).

Put it in a constant family:

Classical K.P. MF(X × A2,W + xy) ≃ MF(X ,W ). (Knörrer ’87)

He was studying f (x , y) + z21 + · · ·+ z2n , found 2-periodicity (above), and almost

1-periodicity:

MF(An+1,F + z2) → MF(An × [A1/{±1}],F + z2) ≃ MF(An,F ).

6



Classical Knörrer periodicity

Fact: MF(A2, xy) ≃ Db(pt) generated by E = (O
x
⇄
y

O[1]).

Put it in a constant family:

Classical K.P. MF(X × A2,W + xy) ≃ MF(X ,W ). (Knörrer ’87)

He was studying f (x , y) + z21 + · · ·+ z2n , found 2-periodicity (above), and almost

1-periodicity:

MF(An+1,F + z2) → MF(An × [A1/{±1}],F + z2) ≃ MF(An,F ).

6



Classical Knörrer periodicity

Fact: MF(A2, xy) ≃ Db(pt) generated by E = (O
x
⇄
y

O[1]).

Put it in a constant family:

Classical K.P. MF(X × A2,W + xy) ≃ MF(X ,W ). (Knörrer ’87)

He was studying f (x , y) + z21 + · · ·+ z2n , found 2-periodicity (above), and almost

1-periodicity:

MF(An+1,F + z2) → MF(An × [A1/{±1}],F + z2) ≃ MF(An,F ).

6



Modern Knörrer periodicity

Choice of generator: (O
x
⇄
y

O[1]) or (O
y
⇄
x

O[1]);

two isotropic subspaces {x = 0} and

{y = 0} for the quadratic form xy .

So to apply Knörrer periodicity in a family, we want:

• plane bundle with a non-degenerate quadratic form, and

• global choice of one isotropic subspace. → line bundle summand L .

Family K.P. For a line bundle L → X , there is a canonical non-degenerate quadratic

form Q on L ⊕ L ∨, and MF(Tot(L ⊕ L ∨),W + Q) ≃ MF(X ,W ).

Remark: Tot(L ) is the local model for X being a hypersurface with normal bundle

L . But the critical locus is concentrated on X , so we can extend to a global model

without changing MF.

Global K.P. If a hypersurface X ⊂ Y is cut out by a section f of a line bundle

L → Y , then MF(Tot(L ∨ → Y ),W + f · p) ≃ MF(X ,W ) where

p ∈ H0(Tot(L ∨ → Y ),L ∨) is tautological.

Example: For a complete intersection X = {f1 = · · · = fn = 0}, we get

Db(X ) ≃ MF(Tot(L1 ⊕ · · · ⊕ Ln), f1p1 + · · ·+ fnpn).
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Examples

Degree d hypersurface X = {f (x) = 0} ⊂ Pn:

Db(X )
K.P.
≃ MF(TotOPn (−d), f (x)p).

The space TotOPn (−d) is a GIT quotient Cn+2/C∗
1,...,1,−d . Other stability condition:

other GIT quotient [An+1/µd ].

Fact: Bondal-Orlov flip/flop SOD also works for MF.

Calabi-Yau condition for X / TotO(−d): If n + 1 = d , then

Db(X )
K.P.
≃ MF(TotO(−d), f (x)p)

flop
≃ MF([An+1/µd ], f (x)).

RHS simpler space helps study Serre functors (for Kusnetsov components in Fano

case), Hochschild cohomology (Jacobi algebra of f ), e.t.c.

Example
Elliptic curve E ⊂ P2 through a point (0 : 0 : 1). Then f = xP + yQ, and(

x Q

−y P

)
·
(
P −Q

y x

)
in MF([A3/µ3], f ) corresponds to the point (0 : 0 : 1).

8
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Examples

Nodal curve: Y = {y2 = x3 + x2} ⊂ A2, blow up the origin (ambient space):

A1 ≃ Ỹ = {y2 = x3q + x2} ⊂ Tot(O(−1)q → P1
x :y )

(xq,yq)−−−−→ A2.

Apply K.P. to both:

Db(Y ) MF(A3, (y2 − x3 − x2)p)

Db(Ỹ ) MF(Tot(O(−2)p ⊕O(−1)q), (y2 − x3q − x2)p)

K.P.

π∗

K.P.

∃!

Have a flip:

Tot(O(−2)p ⊕O(−1)q → P1
x :y ) 99K Tot(O(−1)2x,y → P(2 : 1)p:q).

Get an SOD with one exceptional object:

MF(TotOP(2:1)(−1)2, (y2 − x3q − x2)p) = ⟨Db(pt),Db(Ỹ )⟩.

Point: K.P. on Y gives A3
x,y,p with superpotential. This is the open set

{q ̸= 0} ⊂ TotOP(2:1)(−1)2! Pullback π∗ : Perf(Y ) → Db(Ỹ ) isn’t fully faithful, but

after the flip Perf(Y ) embeds in our new MF category.
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{q ̸= 0} ⊂ TotOP(2:1)(−1)2!

Pullback π∗ : Perf(Y ) → Db(Ỹ ) isn’t fully faithful, but

after the flip Perf(Y ) embeds in our new MF category.

9

calum
Pencil



Examples

Nodal curve: Y = {y2 = x3 + x2} ⊂ A2, blow up the origin (ambient space):

A1 ≃ Ỹ = {y2 = x3q + x2} ⊂ Tot(O(−1)q → P1
x :y )

(xq,yq)−−−−→ A2.

Apply K.P. to both:

Db(Y ) MF(A3, (y2 − x3 − x2)p)

Db(Ỹ ) MF(Tot(O(−2)p ⊕O(−1)q), (y2 − x3q − x2)p)

K.P.

π∗

K.P.

∃!

Have a flip:

Tot(O(−2)p ⊕O(−1)q → P1
x :y ) 99K Tot(O(−1)2x,y → P(2 : 1)p:q).

Get an SOD with one exceptional object:

MF(TotOP(2:1)(−1)2, (y2 − x3q − x2)p) = ⟨Db(pt),Db(Ỹ )⟩.

Point: K.P. on Y gives A3
x,y,p with superpotential. This is the open set

{q ̸= 0} ⊂ TotOP(2:1)(−1)2! Pullback π∗ : Perf(Y ) → Db(Ỹ ) isn’t fully faithful, but

after the flip Perf(Y ) embeds in our new MF category.
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Thanks!
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