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Matrix factorizations in the wild
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(Eisenbud '80) Hypersurface singularities: eventually 2-periodic free resolutions, by
matrices factoring the equation.
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Matrix factorizations in the wild

Zay=2°

@ 2

02 2= o 0, 0,/ =0

5 Ox B 0x L Ox B 0x L Ox = Ox/(y) =0

(Eisenbud '80) Hypersurface singularities: eventually 2-periodic free resolutions, by
matrices factoring the equation.

e Stable part: matrix factorization («+» maximal Cohen-Macaulay module)

e Leftover: bounded complex of frees, i.e. Perf
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For a function W on a variety X, we want to define a (‘derived’ dg-/triang.) category
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Gives a Z/2-differential graded category, for ‘derived’ homotopy category use injective

modules, or define quasi-isomorphisms (subtle). Gives MF(X, W) but only
7./2-graded.
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Solution (Z-graded)
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An MF of W is a C*-equivariant coherent sheaf with an endomorphism d of weight 1
st d? =W -id.
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Domesticated matrix factorizations

For a function W on a variety X, we want to define a (‘derived’ dg-/triang.) category
MF(X, W) of matrix factorizations, with MF(X,0) = D?(X).

Attempt
An MF of W is a “chain complex” in Coh(X) with d> = W -id instead of zero.

Problem
There is no such thing: deg(d?) =2 # 0 = deg(W - id).

Solution (Z-graded)
Grading data: non-trivial C*-action on X s.t. W has weight 2 (and +1 acts trivially).

An MF of W is a C*-equivariant coherent sheaf with an endomorphism d of weight 1
st d? =W -id.

Gives a dg-category, same ‘deriving’ process as before to get MF(X, W).

e Forgetful functor to Z/2-graded version from +1-eigendecomposition.

e Recovers D?(X) from trivial grading data when W = 0.

Grading is a headache!
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Functors and Kernels

Most things that work for D?(X) work for MF(X, W) in the same way.
Derived functors (with usual boundedness caveats):

o MF(Y, W) — MF(X, 7* W), m\ : ME(X, 7* W) — MF(Y, W)

o MF(X, W) ® MF(X, W) —2= MF(X, W + W’)
Functors MF(X, W) — MF(Y, V) from FM kernels in MF(X x Y,V — W).

Example
X

Take £ = (O = O[1]) in MF(A?, xy) with Z/2-grading. Then
y

y -y
Hom(E,£)=EV @& =| 02 —='01] |,
y

—X

—X

an object in MF(A2, xy — xy) = D?%/2(A?) quasi-isomorphic to O/(x, y), so
RHom(€, €) = RM(O/(x,y)) = C.



MKW )< Cag(Bw=27)

Recall for hypersurface singularities: eventually 2-periodic resolutions; an MF then a
bounded complex.
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o

Recall for hypersurface singularities: eventually 2-periodic resolutions; an MF then a
bounded complex.

For smooth X, the Z/2-graded MF(X, W) is equivalent to Orlov’s derived category of
singularities Dgg({W = 0}) := DP({W = 0})/ Perf({W = 0}).

Fact: Dgg only depends on a Zariski neighbourhood of the singular locus, so

MF(X, W) only depends on a Zariski neighbourhood of Crit(W). Almost only on
formal neighbourhood (need idempotent completion).

MF(X, W) is “like" DP(Crit(W)), but this is only true on the nose for quadratic order
singularities.
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Classical Knorrer periodicity

Fact: MF(A?, xy) ~ DP(pt) generated by £ = (O = O[1)).
y

Proof. We computed earlier that £ is exceptional. Remains to check that
£ ® RHom(&, —) : MF(A2, xy) — MF(A2, xy) is trivial. The FM kernel is

x2 —X1

g}’l —Y2

(rrE)V @mE=| 02 —= 02 | € MF(A* xay2 — x1y1);
Y2 —X1
y1 —X2

| want this to be quasi-isomorphic to (Oa = 0) € MF(A“,xgyg — X1y1)-

( X1—X2 Yi—y2 )

(atx2)/2 —(1+y2)/2 ol

Koszul: 02— 02 ~ (Op = 0).
n+y2)/2 y1—y2
(a+x2)/2 X2*><1>

These are isomorphic by a linear change of coordinates. O

{CV %ZP/MV\
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Classical Knorrer periodicity

X
Fact: MF(A?, xy) ~ DP(pt) generated by £ = (O = O[1]).
y
Put it in a constant family:
Classical K.P. MF(X x A2, W + xy) ~ MF(X, W). (Knérrer '87)

He was studying f(x,y) + zZ + - - - + z2, found 2-periodicity (above), and almost
1-periodicity:

MF(A™ F 4 22) — MF(A" x [Al/{%1}], F 4+ 2%) ~ MF(A", F).
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Family K.P. For a line bundle . — X, there is a canonical non-degenerate quadratic
form Q on £ @ ¢V, and MF(Tot(.Z & .ZV), W + Q) ~ MF(X, W).

Remark: Tot(.Z) is the local model for X being a hypersurface with normal bundle
#. But the critical locus is concentrated on X, so we can extend to a global model
without changing MF.

Global K.P. If a hypersurface X C Y is cut out by a section f of a line bundle
% — Y, then MF(Tot(ZY — Y), W + f - p) ~ MF(X, W) where
p € HY(Tot(LY — Y),£V) is tautological.

[Shipman, "A geometric approach..."]
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X Y

Choice of generator: (O = O[1]) or (O = O[1]); two isotropic subspaces {x = 0} and
y X

{y = 0} for the quadratic form xy.

So to apply Knorrer periodicity in a family, we want:

e plane bundle with a non-degenerate quadratic form, and

e global choice of one isotropic subspace. — line bundle summand .Z.

Family K.P. For a line bundle . — X, there is a canonical non-degenerate quadratic
form Q on £ @ £V, and MF(Tot(.Z & .ZV), W + Q) ~ MF(X, W).

Remark: Tot(.Z) is the local model for X being a hypersurface with normal bundle
#. But the critical locus is concentrated on X, so we can extend to a global model
without changing MF.

Global K.P. If a hypersurface X C Y is cut out by a section f of a line bundle
% — Y, then MF(Tot(.£Y — Y), W + f - p) ~ MF(X, W) where
p € HY(Tot(LY — Y),£V) is tautological.

Example: For a complete intersection X = {fi = -+ = f, = 0}, we get

Db(X) ~ MF(Tot(AA @ - - - © %), ip1 + - - - + fapn).



et ! Q) !
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Db(X) & MF(Tot Opn (—d), F(x)p).
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Degree d hypersurface X = {f(x) =0} C P™

Db(X) & MF(Tot Opn (—d), F(x)p).

The space Tot Opn(—d) is a GIT quotient (C”'*'Q/(C{ 1._g- Other stability condition:
other GIT quotient [A™1/py].

Fact: Bondal-Orlov flip/flop SOD also works for MF.

Calabi-Yau condition for X / Tot O(—d): If n+ 1 = d, then

P. fl

D(X) 'E MF(Tot O(~d), f(x)p) < MF([A™ /ugl, F(x)).
RHS simpler space helps study Serre functors (for Kusnetsov components in Fano
case), Hochschild cohomology (Jacobi algebra of f), e.t.c.

Example
Elliptic curve E C P? through a point (0:0:1). Then f = xP + yQ, and

( X Q) . (P _Q> in MF([A3/u3], f) corresponds to the point (0:0: 1).
-y P y X
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Nodal curve: Y = {y? = x3 + x?} C A2, blow up the origin (ambient space):
A~ ¥ = ()2 = x3q+ X2} C Tot(O(—1)q — PL) LD, 42
Apply K.P. to both:

Db(Y) ——KEB 5 MF(A3, (y2 — 53 — x?)p)

1 ]

DE(V) 25 MF(Tot(O(—2), ® O(—1)q), (v — x*q — x?)p)

=2

Tot(O(~2)p & O(~1)g — BL,) --G»t(@(—l)i,y SR Dpa), o \

Get an SOD with one exceptional object:

Have a flip:

MF(Tot Op(21)(—1)% (v* — x*q — x*)p) = (D*(pt), D°(Y)).
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Nodal curve: Y = {y? = x3 + x?} C A2, blow up the origin (ambient space):

A~ ¥ = ()2 = x3q+ X2} C Tot(O(—1)q — PL) LD, 42

Apply K.P. to both:

Db(Y) ——KEB 5 MF(A3, (y2 — 53 — x?)p)
ﬁ aq
DE(V) 25 MF(Tot(O(—2), ® O(—1)q), (v — x*q — x?)p)

Have a flip:
Tot(O(—2)p ® O(—1)g = PL,) --» Tot(O(=1)Z , = P(2 : 1),.4).
Get an SOD with one exceptional object:
MF(Tot Op(a(—1)2, (v — x3q — x2)p) = (DP(pt), D(V).

Point: K.P. on Y gives A3 with superpotential.

X,Y,P



Nodal curve: Y = {y? = x3 + x?} C A2, blow up the origin (ambient space):
Al ¥ = {y? =3q + 2} C Tot(O(~1)q — BL,) P20, 42,
Apply K.P. to both:
Db(Y) KR |\/|2 — 53 7X2)p)
”*T a!T

Db(¥) KPoy MF(Tot(O(~2)p ® O(~1)q), (2 — x*q — x?)p)
Have a flip:

Tot(O(—2)p ® O(—1)g = PL,) --» Tot(O(=1)Z , = P(2 : 1),.4).

Get an SOD with one exceptional object:
MF(Tot Opay(—1)2, (v2 — x3q — x%)p) = (D(pt), DE(V)).

Point: K.P. on Y gives A3 P
{q # 0} C Tot Op(2.)(—1)?!

with superpotential. This is the open set


calum
Pencil


Nodal curve: Y = {y? = x3 + x?} C A2, blow up the origin (ambient space):
A~ ¥ = ()2 = x3q+ X2} C Tot(O(—1)q — PL) LD, 42
Apply K.P. to both:

¥ DE(Y) —KP MF(A3, (2 — x* — x2)p)

] i

(¥) 485 MF(Tot(0(~2), @ O(—1)q), (v? — x3q — x2)p)
4}7 Have a flip: L
Tot(O(—2)p ® O(—1)g = PL,) --» Tot(O(=1)Z , = P(2 : 1),.4).
Get an SOD with one exceptional object:
MF(Tot Op(a.1)(—1)%, (v* — x*q — x*)p) = (D°(pt), D°(Y)).

Point: K.P. on Y gives AX .y,p With superpotential. This is the open set
{q # 0} C Tot Oppa.1)(— 1)2! Pullback 7* : Berf(Y) — D2(Y) isn't fully faithful, but
after the flip Perf(Y) embeds in our new MF category.
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Thanks!





