Tilting sheaves and a Baer-Bondal theorem

DOGS Online Seminar 15 of october of 2024

Daniel Bernal

Universidade Estadual de Campinas

- **Advisor:** Ph.D. Marcos Benevenuto Jardim
- **Co-advisor:** Ph.D. Cristian Mauricio Martínez Esparza

Notation

- A abelian category,
- $D^b(X) := D^b(\text{Coh}(X)),$
- all vector spaces over $\mathbb C$,
- *RF* and *LG* are the right and left derived functors when they exist,
- Mod(*A*) abelian category of *A*−modules
- mod(*A*) abelian category of fg *A*−modules,
- *X* smooth projective over C

The category of representations of quivers

Two important quivers

Kronecker quiver

*Beilinson quiverfor*P *n*

Representation of a quiver

- A representation of a quiver is just a functor $\mathcal{C}Q \longrightarrow \mathsf{Vec}_\mathbb{C}$.
- A morphism is just a natural transformation.

Example

The representations of $\bullet \equiv \Rightarrow \bullet \text{ of dimension } (1,1)$ are

$$
\mathbb{C} \xrightarrow[\text{w}_2]{w_1} \mathbb{C}
$$

Isoclasses of representations are parameterised by $\mathbb{C}^2 - \{\circ\} \setminus \mathbb{C}^* = \mathbb{P}^1$

Path algebra

We assume*Q* connected.

- C−*algebra*C*Q*
- basis is the set of paths,
- product is the concatenation of paths

C*Q* is graded and associative:

$$
\mathbb{C}Q = \bigoplus_{k \geq 0} (\mathbb{C}Q)_k; \quad (\mathbb{C}Q)_{\circ} = \{e_i\}_{i \in Q_{\circ}}
$$

Such e_i are orthogonal idempotents, and 1 $= \sum_{i} e_i.$

 $\dim_{\mathbb{C}} \mathbb{C} Q < +\infty \Longleftrightarrow Q$ has no oriented cycles

A neat equivalence

Let *A* a **C**−algebra, A^{op} is the opposite algebra

 $a \cdot b = ba$

- mod(*A* op)category of f.g. right *A*−modules,
- $CQ^{op} = (CQ)^{op}$

Proposition

 $rep_{\mathcal{C}}(Q) \cong mod(\mathbb{C}Q)$

Proof and abelianity(?)

$$
W = (W_i, w_a) \rightsquigarrow M = \bigoplus_{i \in Q_o} W_i
$$

$$
M \in \text{mod}(\mathbb{C}Q) \rightsquigarrow \begin{cases} W_i = e_i M \\ w_a : W_{s(a)} \longrightarrow W_{t(a)} \ \forall a \in Q_1 \end{cases}
$$

This instantly shows that rep $_\mathbb{C}(\overline{Q})$, rep $_\mathbb{C}(\overline{Q}^\mathrm{op})$ are abelian

Relations on a quiver

A **relation** on Q is a C−linear combination of paths of length \geq 2, with the same head and tail.

finite set of relations ←→ two-sided ideal⟨*R*⟩

We can consider representations of(*Q*, *R*), *R* being a set of relations.

 $rep_{\mathcal{C}}(Q, R)$ category of f.d. representations of (Q, R)

Proposition

$$
\mathsf{rep}_\mathbb{C}(\mathsf{Q},R) \cong \mathsf{mod}\left(\mathbb{C}Q_{\left\langle R\right\rangle}\right)
$$

An example

Beilinson for \mathbb{P}^2

$$
R = \{a_1a_5 - a_2a_4, a_1a_6 - a_3a_4, a_2a_6 - a_3a_5\}
$$

This relations correspond to the commutativity of the linear forms x, y, z in \mathbb{P}^2 .

$$
\mathbb{C} Q_{\big / \langle R \rangle} \cong \text{End} \left(\mathbb{O}_{\mathbb{P}^2} \oplus \mathbb{O}_{\mathbb{P}^2}(1) \oplus \mathbb{O}_{\mathbb{P}^2}(2) \right)
$$

Simple objects and JH-filtrations

S(*i*) for all $i \in Q_0$ are a set of simple objects in rep_C(*Q*, *R*). If *A*, *B* are simple objects in A,

$$
\circ \longrightarrow A \longrightarrow C \longrightarrow B \longrightarrow \circ
$$

Jordan-Hölder filtration of $E \in \mathcal{A}$

 $0 = E_0 \subset E_1 \subset \cdots \subset E_{n-1} \subset E_n = E$

 $\mathsf{such\ that\ } F_i = {}^E\! \dot{\mathscr{S}}_{E_{i-1}}$ is simple. Such factors are $\mathsf{unique!}$

E can be obtained by extensions of simple objects.

 \mathbf{I}

Finite length

A has **finite length** if for all $E \in \mathcal{A}$, there is a J-H filtration.

Proposition

 $rep_{\mathcal{C}}(Q, R)$ has finite length

Proof

W a f.d. representation of*Q*. *W* is simple or there is a SES

$$
\circ \longrightarrow S \longrightarrow W \longrightarrow Q \longrightarrow \circ
$$

Repeat and we get *B* simple and $f: W \longrightarrow B$ surjective.

$$
W^1=\ker(W\longrightarrow B)\subset W
$$

Grothendieck group of $rep_{\mathbb{C}}(Q, R)$

The **Grothendieck group** $K(A)$ is the free abelian group generated by isoclasses mod $C = A + B$ if exists a SES in A

$$
o \longrightarrow A \longrightarrow C \longrightarrow B \longrightarrow o
$$

Example: $K(Vec_{\mathbb{C}}) = \mathbb{Z}$.

Theorem

Let(*Q*, *R*) an acyclic bound quiver. Then the Grothendieck group is generated by the vertex set of*Q*, i.e.,

$$
K(\mathcal{A})=\mathbb{Z}^{\mathbb{Q}_{\circ}}
$$

The comparison

 $rep_{\mathbb{C}}(Q, R)$ is way simpler than $Coh(X)$

- Simple objects in Coh (X) are skyscraper sheaves of $x \in X$,
- It is impossible to obtain a filtration by finitely many of these.
- Only sheaves of dimension 0 (supported in dimension 0).
- Thus $Coh(X)$ cannot have finite length.

The Baer-Bondal theorem

Motivation

Describe D^b (Coh (X)) *using* D^b (rep_C(*Q*, *R*)).

Maybe we can make computations on $D^b(\textsf{Coh}(X))$ using Q?

Generators of triangulated categories

Let D be a triangulated category.

- D is**thick** if its closed under
	- isomorphisms,
	- shifts,
	- cones,
	- direct summands.
- The **eppaise envelope** of *E* on $\mathcal D$ os the smallest thick \triangle subcategory of $\mathcal{D} \supset E$.
- If $\langle E \rangle_{\mathcal{D}} = \mathcal{D}$, then *E* generates clasically \mathcal{D} .

Tilting sheaves

We remember that

```
gdim(A) = max (pdim(M) | M \in Mod(A))
```
Definition

 $T \in \text{Coh}(X)$ is a **tilting sheaf** if

- T1. $A = \mathsf{End}_{\mathcal{O}_X}(T)$ has gdim $< +\infty$,
- T2. $\mathsf{Ext}^k_{\mathcal{O}_X}(T,T) = \mathsf{o}$ for all $k > \mathsf{o}$,
- T3. T clasically generates $D^b(\textsf{Coh}(X))$

Baer-Bondal, at least

Theorem(Baer, [1988;](#page-33-1) Bondal, [1990\)](#page-33-2)

Let *T* be a tilting sheaf on a smooth projective variety *X*, with $A =$ $\mathsf{End}_{\mathcal{O}_X}(T)$ its associated tilting algebra, then

$$
F(-) := \text{hom}_{\mathcal{O}_X}(T, -) : \text{Coh}(X) \longrightarrow \text{mod}(A^{\text{op}})
$$

$$
G(-) := - \otimes_A T : \text{mod}(A^{\text{op}}) \longrightarrow \text{Coh}(X)
$$

induce **equivalences of** \triangle d categories:

$$
RF(-): R \text{ hom}_{\mathcal{O}_X}(T,-): D^b(\text{Coh}(X)) \longrightarrow D^b(\text{mod}(A^{\text{op}}))
$$

$$
LG(-): = - \otimes_A^L T : D^b(\text{mod}(A^{\text{op}})) \longrightarrow D^b(\text{Coh}(X))
$$

Sketch of the proof

- 1. Existence of the right derived functor *RF*,
- 2. *RF* is defined in the categories we want,
- 3. Existence of the left derived functor *LG*,
- 4. *LG* is defined in the categories we want,
- 5. *RF* and *LG* are in fact inverses.

Existence of *RF*

hom_{Ω}, becomes a right *A*−module by composition.

As hom $(T, -)$ is covariant left-exact and $QCoh(X)$ has enough injetives, there is a right derived functor

 $RF(-) = R \text{ hom}_{\mathcal{O}_X}(T, -) : D^b(\text{QCoh}(X)) \longrightarrow D(\text{Mod}(A^{\text{op}}))$

Defined in the right sense

What are the cohomologies of the image?

```
H^i(R \text{ hom}(T, E)) = R^i \text{ hom}(T, E) = \text{Ext}^i(T, E)
```
As *X* is smooth, then Ext^{*i*} = 0 for *i* > dim *X*, *i* < 0. Thus *RF* lies in $D^b(\operatorname{\mathsf{Mod}}\nolimits(A^{\mathsf{op}}))$. $D^b(\operatorname{\mathsf{Coh}}\nolimits(X))\cong{\mathcal D}\subset D^b(\operatorname{\mathsf{QCoh}}\nolimits(X))$ with coherent cohomologies, we can restrict

 $\left. RF \right|_{D^b(\textsf{Coh}(X))}$

If *E* ∈ Coh(*X*), Ext*ⁱ* (*T*, *E*) is f.d. as a C−vector space, hence as an *A*−module. Thus,

cohomologies lie in mod(*A* op)

Existence of *LG*

$RF: D^b(\textsf{Coh}(X)) \longrightarrow D^b(\textsf{mod}(A^{\textsf{op}}))$

- $Mod(A^{op})$ has enough projectives,
- $\bullet \otimes_A T$ is right exact,

then we get a left-derived functor

 $LG(-) = -\otimes^L_A T : D^b(\operatorname{\mathsf{Mod}}\nolimits(A^{\mathsf{op}})) \to D(\operatorname{\mathsf{QCoh}\nolimits}(X))$

Defined in the right sense

 $B \in Mod(A)$, then its cohomology sheaves:

 $H^i(B \otimes^L T) = \text{Tor}_A^{-i}(B, T)$

As *A* has finite gdim, then this is 0 after a finite number.

If we restrict to f.g. *A*−modules, the cohomologies are coherent, giving

$$
LG(-)=-\otimes^L_A T:D^b(\mathsf{mod}(A^{\mathsf{op}}))\longrightarrow D^b(\mathsf{Coh}(X))
$$

In fact inverses

As *T* satisfies T2,

$$
RF \circ LG(A) = RF(A \otimes_A^L T)
$$

= R hom_{O_X}(T, A \otimes_A^L T)
= hom_{O_X}(T, T) = A

We can show that A clasically generates $D^b(\operatorname{mod}(A^{\operatorname{op}}))$, thus the composition is the identity.

In fact inverses

T satisfies T3, we can do a similar argument and as *T* clasically generates $D^b(\operatorname{Coh}(X))$, the composition is the identity.

Then RF and LGare inverses.

Applications and Exceptional collections

The natural map

Let $E \in D^b(\mathcal{A})$, then

$$
[E]:=\sum_i{(-1)^i[E^i]}\in K(\mathcal{A})
$$

gives a well defined map

$$
[-]: D^b(\mathcal{A}) \longrightarrow K(\mathcal{A})
$$

such that $[E + F] = [E] + [F]$.

Bilinear forms

1. *K*(Coh(*X*)) admits one:

$$
\langle [E],[F]\rangle := \sum_i (-1)^i \dim_{\mathbb{C}} \mathsf{Ext}^i_{\mathcal{O}_X}(E,F)
$$

2. For $K(\text{mod}(A))$, if gdim $A < +\infty$,

$$
\langle [M],[N]\rangle:=\sum_i{(-1)^i\dim_{\mathbb{C}}\operatorname{Ext}^i(M,N)}
$$

Isomorphism of Grothendieck groups

Proposition

 T a tilting sheaf on X , $A = \mathsf{End}_{\mathcal{O}_X}(T)$, then

$$
[RF(-)] : K(\text{Coh}(X)) \longrightarrow K(\text{mod}(A^{\text{op}}))
$$

$$
[RF(-)] = \sum_{i} (-1)^{i} Ext_{\mathcal{O}_X}^{i}(T, -)
$$

is an isomorphism that preserves the natural bilinear forms on each side.

[quivers](#page-1-0) [baer-bondal](#page-14-0) approximations, exceptional [applications, exceptional](#page-26-0) references
- [References](#page-33-0) applications of the conductions of the conductions of the conductions of the conductions of the c റററൈ∙ററ

Necessary condition

In particular,

Corollary

If *X* is a smooth projective variety that admits a tilting sheaf, then $K(Coh(X))$ is finitely generated and free.

Now our question becomes, which varieties admit tilting bundles?

(Full and) Exceptional collections

Let D be a triangulated category.

1. $E \in \mathcal{D}$ is **exceptional** if

 $hom_{\mathcal{D}}(E, E) = \mathbb{C}$, $hom_{\mathcal{D}}(E, E[k]) = \mathsf{O} \forall k \neq \mathsf{O}$.

2. A sequence (E_0, \ldots, E_m) of exceptional objects is **exceptional** if

 $R \text{ hom}_{\mathcal{D}}(E_i, E_j) = \text{o}$ for all $i > j$,

- 3. $\;$ it is $\sf{strongly\, exceptional}$ if we also have $\sf{hom}_{\mathcal D}(E_i,E_j[k]) = \sf{dom}_{\mathcal D}(E_i,E_j[k])$ for $i < j, k \neq o$,
- 4. and **full** if E_0, \ldots, E_m generate $\mathcal D$ as a \triangle category.

Tilting bundles and exceptional collections

Proposition

Let T be a locally-free sheaf on X such that $T=\bigoplus_{i=0}^m E_i$ is a decomposition into line bundles.

1. If *T* satisfies T1 and T2, then

 (E_0, \ldots, E_m) is a **strong exceptional** collection

2. If *T* satisfies T1, T2 and T3, then

 (E_0, \ldots, E_m) is a **full strong exceptional** collection

Every full strong exceptional collection defines a tilting sheaf.

Bibliography I

F

Baer, D. (1988).Tilting sheaves in representation theory of algebras. *Manuscripta Math.*, *60*(3), 323–347. <https://doi.org/10.1007/BF01169343> Bondal, A. I. (1990). Helices, representations of quivers and Koszul algebras. In *Helices and vector bundles* (pp. 75–95, Vol. 148). Cambridge Univ. Press, Cambridge.

<https://doi.org/10.1017/CBO9780511721526.008>

Thanks!

