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Notation

o A abelian category,

e D'(X) := D’(Coh(X)),

e all vector spaces over C,

e RF and LG are theright and left derived functors when they exist,
e Mod(A) abelian category of A—modules

e mod(A) abelian category of fg A—modules,

e X smooth projective over C
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The category of representations of quivers
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Two important quivers

Kronecker quiver
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Beilinson quiver for IP"
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Representation of a quiver

e Arepresentation of a quiver isjusta functor CQ — Vecc.

e A morphismisjusta natural transformation.

Example

The representations of ¢ ——< e ofdimension (1,1) are
Wy
C—=C

Isoclasses of representations are parameterised by
C*—{o}\C* =1




Path algebra

We assume Q connected.

C—algebra CQ

e basisis the set of paths,

e productis the concatenation of paths

CQ is graded and associative:

CQ = EB(CQ)k: (CQ)o = {eitica,

k>o
Such ¢; are orthogonal idempotents,and1 = ) _e;.

dim¢ CQ < 400 <= Q has no oriented cycles
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A neat equivalence

Let Aa C—algebra, A is the opposite algebra
a-b=nba
e mod(A°P) category of f.g. right A—modules,
o CQ* = (CQ)*

Proposition

repc(Q) = mod(CQ)
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Proof and abelianity(?)

W= (Wi, w,) ~ M =P W
i€Qo
Wi = €iM

M € mod(CQ) ~
w, - Ws(a) — Wt(a) Va € Q_I

This instantly shows that repc(Q), repe (Q°P) are abelian
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Relations on a quiver

Arelation on Q is a C—linear combination of paths of length> 2,
with the same head and tail.

finite set of relations <— two-sided ideal (R)
We can consider representations of (Q, R), R being a set of relations.

repc(Q, R) category of f.d. representations of (Q, R)

Proposition

repc(Q, R) = mod (CQ/<R>)
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An example

Beilinson for IP*

ay ay

[ ]
NN
[ ]
NN
[

as g
R ={a,as — a,a,, a,as — a;a,, 4,0, — d;ds}
This relations correspond to the commutativity of the linear forms

x,y,zin P2

CQ/(R) = End (Op: @ Op:(1) & Op:(2))
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Simple objects and JH-filtrations

S(i) foralli € Q, are asetof simple objects in repc(Q, R). IfA, B
are simple objectsin A,

o} > A

~
@)
2
o~}
~
(o]

Jordan-Hoalder filtration of E € A
o=E,CE C---CE,,CE,=E

suchthat F; = EVEi_I is simple. Such factors are unique!

E can be obtained by extensions of simple objects.




Finite length

A has finite length if forall E € A, thereis aJ-H filtration.

Proposition
repc(Q, R) has finite length

Proof
W afd. representation of Q. Wis simple or there is a SES

0 > S > W > Q > O

Repeat and we get Bsimple and f : W — B surjective.

W' =ker(W — B) C W O




Grothendieck group of repc(Q, R)

The Grothendieck group K(A) is the free abelian group generated
by isoclasses mod C = A + BifexistsaSESin A

¢ > A » C > B

~
(o]

Example: K(Vecc) = Z.

Theorem

Let (Q, R) an acyclic bound quiver. Then the Grothendieck group is
generated by the vertexsetof Q, i.e.,

K(A) =272
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The comparison

repc(Q, R) is way simpler than Coh(X)

Simple objects in Coh(X) are skyscraper sheaves of x € X,

Itisimpossible to obtain a filtration by finitely many of these.

Only sheaves of dimension o (supported in dimension 0).

Thus Coh(X) cannot have finite length.
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The Baer-Bondal theorem
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Motivation

Describe D?(Coh(X)) using D®(repc(Q, R)).

Maybe we can make computations on D?(Coh (X)) using Q?
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Generators of triangulated categories

Let D be a triangulated category.

e Disthickifits closed under
o isomorphisms,
o shifts,
o cones,
o direct summands.

e The eppaise envelope of E on D os the smallest thick A subcate-
goryof D D E.

e If (E)p = D, then E generates clasically D.




Tilting sheaves

We remember that

gdim(A) = max (pdim(M) |M € Mod(A))

Definition

T € Coh(X) is a tilting sheaf if
T1. A = Endp,(T) has gdim < +o0,

T2. Extlé)X(T, T) =oforallk > o,

T3. Tclasically generates D*(Coh(X))
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Baer-Bondal, at least

Theorem (Baer, 1988; Bondal, 1990)

Let T be a tilting sheaf on a smooth projective variety X, with A =
Ende, (T) its associated tilting algebra, then

F(—) := homg, (T, —) : Coh(X) — mod(A°?)
G(—) = —®4 T:mod(A®) — Coh(X)

induce equivalences of A\d categories:

RF(—) : Rhomg, (T, —) : D*(Coh(X)) — D*(mod(A%))
LG(—) := — ®% T : D*(mod(A*®)) — D"(Coh(X))
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Sketch of the proof

1. Existence of the right derived functor RF,
2. RFisdefined in the categories we want,
3. Existence of the left derived functor LG,
4. LGisdefined in the categories we want,

5. RFand LG arein factinverses.
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Existence of RF

homg, becomes a right A—module by composition.

As hom(T, —) is covariant left-exact and QCoh(X) has enough
injetives, there is a right derived functor

RF(—) = Rhomg, (T, —) : D"(QCoh(X)) — D(Mod(A%))




Defined in the right sense
What are the cohomologies of the image?
H'(Rhom(T,E)) = R hom(T, E) = Ext'(T, E)
As X is smooth, then Ext' = ofori > dimX,i < 0. Thus RF lies in

D?(Mod(A%)). D?(Coh(X)) = D C D*(QCoh(X)) with coherent
cohomologies, we can restrict

RF‘DZ’ Coh(X))

If E € Coh(X), Ext'(T, E) is fd. as a C—vector space, hence as an
A—module. Thus,

cohomologies lie in mod(A°P)
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Existence of LG

RF : D*(Coh(X)) — D®(mod(A°))
e Mod(A°P) has enough projectives,
e — ®, Tisrightexact,

then we get a left-derived functor

LG(—) = — ®% T : D*(Mod(A%)) — D(QCoh(X))
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Defined in the right sense

B € Mod(A), then its cohomology sheaves:
H'(B®"T) = Tor, (B, T)
As A has finite gdim, then this is 0 after a finite number.

If we restrict to f.g. A—modules, the cohomologies are coherent,
giving

LG(—) = — ®% T : D*(mod(A°)) — Db(Coh(X))
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In factinverses

As T satisfies T2,

RFoLG(A) = RF(A®LT)
= Rhomg, (T, A @5 T)
= hom, (T, T) =A

We can show that A clasically generates D?(mod(A°)), thus the
composition is the identity.
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In factinverses

T satisfies T3, we can do a similarargument and as T clasically gener-
ates D?(Coh(X)), the composition is the identity.

Then RF and LG are inverses.
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Applications and Exceptional collections
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The natural map

Let E € D*(A), then

gives a well defined map
[—]: DY(A) — K(A)

such that [E + F] = [E] + [F].
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Bilinear forms

1. K(Coh(X)) admits one:

([E], [F]) := ) _(—1)'dimc Ext}y, (E, F)
2. ForK(mod(A)),ifgdimA < +oo,
(M1, [N]) == Y _(—1) dimc Ext'(M, N)

i




APPLICATIONS, EXCEPTIONAL
0O00@000

Isomorphism of Grothendieck groups

Proposition
T atilting sheafon X,A = Ende, (T), then

[RF(—)] : K(Coh(X)) — K(mod(A°?))
[RE(=)] = ) _(—1)" Extly, (T, —)

i

is an isomorphism that preserves the natural bilinear forms on each
side.
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Necessary condition

In particular,

Corollary

If X is a smooth projective variety that admits a tilting sheaf, then
K(Coh(X)) is finitely generated and free.

Now our question becomes, which varieties admit tilting
bundles?
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(Full and) Exceptional collections

Let D be a triangulated category.

1. E € Disexceptional if
homqy (E,E) =C, homyp(E,E[k]) =oVk # o.
2. Asequence (E,, ..., E,,) of exceptional objects is exceptional if
Rhomq (E;, E;) = oforalli > j,

3. itis strongly exceptional if we also have hom, (E;, Ej[k]) = o
fori <j,k # o,

4. and fullifE, ..., E,, generate D as a A\ category.
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Tilting bundles and exceptional collections

Proposition

Let T be a locally-free sheaf on X such that T = €D | E; is a decom-
position into line bundles.
1. If T satisfies T1and T2, then

(Eo, ..., E,) isastrong exceptional collection
2. If T'satisfies T1, T2and T3, then
(Eo, ..., E,)isafull strong exceptional collection

Every full strong exceptional collection defines a tilting sheaf.
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