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Overview

Definition

A (geometric) phantom is an admissible subcategory A ⊂ Db(X )
for X smooth projective such that K0(A) = 0 and HH•(A) = 0.

K0, HH•, HH•, (disproven) conjectures, and phantoms.
Kuznetsov’s theory of heights, Krah’s construction, extension
to other rational surfaces.
Studying phantoms using HH• and spectral sequence for
Hom•(i∗−, i∗−).
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Hochschild (Co)homology

For a dg-cat C: HH• = Tor•Cop⊗C(C, C), HH• = Ext•Cop⊗C(C, C).
For a triangulated cat., take a dg-enhancment.

For Db(X ):

HH• = H•(X × X ,∆∗OX ⊗∆∗OX )

=
n⊕

p=1

H•+p(X ,Ωp
X )

HH• = Hom•
X×X (∆∗OX ,∆∗OX )

=
n⊕

p=0

H•−p(X ,

p∧
TX )

If Db(X ) = ⟨A,B⟩, then for PB → ∆∗OX → PA in Db(X × X ),

HH•(A) = H•(X × X ,PA ⊗ PT
A ), HH•(A) = Hom•

X (P,P)

Note: PA is FM kernel for i∗ : Db(X )→ A.
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Semi-orthogonal decompositions and (disproven) conjectures

K0 and HH• are additive:
C = ⟨Ai ⟩i =⇒ K0(C) =

⊕
i K0(Ai ), HH•(C) =

⊕
i HH•(Ai ).

HH• is NOT, but
C = ⟨A,B⟩ =⇒ HH•(C)→ HH•(A)⊕ HH•(B)→ Ext•(ϕ, ϕ)
where ϕ : B → A is the gluing functor i !|B.

Conjecture (Kuznetsov 2009)

If A ⊂ Db(X ) admissible with HH•(A) = 0, then A = 0.

Conjecture (Kuznetsov 2014)

If C has a full exceptional collection ⟨E1, ..., En⟩, then every
exceptional collection of length n is full.

Meta conjecture: every conjecture about derived categories is false!
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Phantom categories

Definition

A (geometric) phantom is an admissible subcategory A ⊂ Db(X )
for X smooth projective such that K0(A) = 0 and HH•(A) = 0.

Example (GO 2013, BGvBKS 2015)

On general type surfaces and their products.

Example (Krah 2023)

On Bl10ptsP2.

Example (KKLLMMPRV 2025, MXY 2025)

On Bl11ptsP2, Bl9ptsF2, Bl10ptsP2 (new?).

Idea: find a maximal exceptional collection that is not full.
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Kuznetsov’s normal Hochschild cohomology and heights

How to tell B = ⟨E1, ..., En⟩ ⊂ Db(X ) isn’t full? Letting A = B⊥,

NHH•(B,X )→ HH•(X )→ HH•(A)

NHH• defined via dg-categories, computed by a spectral sequence.

Definition

The height of B is the minimal h such that NHHh(B,X ) ̸= 0.
The pseudoheight is minimal h such that Ep,q

1 ̸= 0 with p + q = h.

Input is non-trivial degrees of Hom•(Ei , Ej) and Hom•(Ei ,S−1Ej).

Theorem (Kuznetsov 2014)

If ph > 0, then A ≠ 0.

Proof: h ≥ ph, so h > 0 =⇒ HH0(X ) ↪→ HH0(A) =⇒ A ̸= 0.
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Krah’s construction

Let X = Bl10ptsP2, points in general position. Note K 2
X = −1.

Starting with ⟨OX ,OX (E1)...,OX (E10),OX (H),OX (2H)⟩,
apply reflection ι : Pic(X )→ Pic(X ), KX 7→ KX , K⊥

X 7→ −K⊥
X :

Di := ι(Ei ) = −6H+2
10∑
j=1

Ej −Ei , F := ι(H) = −19H+6
10∑
j=1

Ei

Theorem (Krah 2023)

B := ⟨OX ,OX (D1)...,OX (D10),OX (F ),OX (2F )⟩ is an exceptional
collection and A := B⊥ is a phantom.

Proof: Hom• vanishing by case of SHGH conjecture/computer.
And dimHom•(Ei , Ej) = χ(Ei , Ej)[2] for i < j , so h > 0.
Also found HH2(A) ∼= H1(TX ) ∼= C12.
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Other rational surfaces

Theorem (KKLLMMPRV 2025)

Exist reflections on Pic of Bl11ptsP2 and Bl9ptsF2 sending standard
full exceptional collections to non-full exceptional collections.
The resulting phantoms are distinct from each other and Krah’s.

HH2(ABl11ptsP2)←↩ HH2(Bl11ptsP2) ∼= H1(TBl11ptsP2) ∼= C14.
HH2(ABl9ptsF2) = HH2(Bl9ptsF2) ∼= H1(TBl9ptsF2)

∼= C13.

Theorem (KKLLMMPRV 2025)

There is another reflection on Pic(Bl10pts(P2)) yielding a phantom.

Reflection can be more general across a plane containing KX .
Pseudoheight insufficient to distinguish this phantom from Krah’s.

Conjecture (KKLLMMPRV 2025)

Exists a phantom on BldptsFn for d ≥ 6 +max{3, n}.
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Spectral sequence for Hom(i∗−, i∗−)

To study objects of A, compute left adjoint i∗ to i : A ↪→ Db(X ).
For E exceptional, the left projection for ⟨E⊥, E⟩ is given by cone

Hom•(E ,K )⊗ E → K → i∗K

Iterating this, we obtain (compare NHH• spectral sequence):

Proposition (M. 2025)

Ep,q
1 =⇒ Homp+q(i∗K ′, i∗K ) with E−p−1,q

1 =

⊕
0≤a0<...<ap≤n,
k0+...+kp+k=q

Homk (K ′
, Ea0 ) ⊗ Homk0 (Ea0 , Ea1 ) ⊗ ... ⊗ Homkp−1 (Eap−1 , Eap ) ⊗ Homkp (Eap ,K)

for p ≥ 0 and E 0,q
1 = Homq(K ′,K ), with d1 signed composition.
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Projections of skyscraper sheaves to Krah’s phantom
E
−p−1,q
1 =

⊕
0≤a0<...<ap≤n,
k0+...+kp+k=q

Homk (κ(x), Ea0 )⊗Homk0 (Ea0 , Ea1 )⊗ ...⊗Homkp−1 (Eap−1 , Eap )⊗Homkp (Eap , κ(x))

for p ≥ 0 and E
0,q
1 = Homq(κ(x), κ(x)).

. . .
⊕
i<j

Hom2(κ(x), Ei ) ⊗ Hom2(Ei , Ej ) ⊗ Hom0(Ej , κ(x))

⊕
i

Hom2(κ(x), Ei ) ⊗ Hom0(Ei , κ(x)) →Hom2(κ(x), κ(x))

Hom1(κ(x), κ(x))

Hom0(κ(x), κ(x))

Proposition
For any x ∈ X ,

Hom•(i∗κ(x), i∗κ(x)) = C1[0]⊕C14[−1]⊕C92[−2]⊕C139[−3]⊕C60[−4]
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Compositions, deformations, and X → A

Since negative Homs vanish and Hom0 ∼= C, i∗κ(x) ∈ sM(A) the
Gm-gerbe of simple universally gluable objects.
Deformations of i∗κ(x) from Hom1, obstructions from ◦ via

Hom0(Ej , κ(x))⊗ Hom2(κ(x), Ei )→ Hom2(Ej , Ei )

For generic x ∈ X , turns out all are obstructed but those from TxX !

Proposition

An irreducible component of sM(A) is birational to X .

But there is a special locus where i∗κ(x) could deform more.

Theorem
The only irreducible effective divisors supported in the special locus
of X are | − KX + Ei | for 1 ≤ i ≤ 10. Thus, i : A ↪→ Db

Coh(X )
characterizes the blowdown map π : X → P2.
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Other objects in A

Strong generator Q ∈ Db(X ) with Hom•(i∗Q, i∗Q) = 0 for • < 0.

Theorem

Exists a co-connective dg-algebra A with Db(A) a phantom.

ι : C → X , C ∈ | − nF | for n ≥ 3, L ∈ Picg−1(C ), P := i∗ι∗L.

Proposition

Hi (P) is zero for i ̸= 0, 1, and P ∈ sM(A) with

0→ H1(C ,OC )→ Hom1(P,P)→ H0(C ,NX/C )→ 0

Deformations of P recover C and maybe X !
But how to intrinsically identify P ∈ A?
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Alternate approach to Hochschild cohomology

If A = ⟨Ei ⟩⊥i and Db(X ) = ⟨Lj⟩j , then A⊠ Db(X ) = ⟨Ej ⊠ Li ⟩⊥.
Spectral sequence with ı : A⊠ Db(X ) ↪→ Db(X × X ) computes

Hom•(ı∗∆∗OX , ı
∗∆∗OX ) = HH•(A)

Complicated in practice, but can access product structure on HH•.

Proposition

For A Krah’s phantom, the product on HH•(A) is trivial.
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Thank you for listening!

T. Liu Y. Liu E. Mackall S. Makarova A. Perry A. Robotis
K. Kemboi, D. Krashen and S. Venkatesh.
A looming of phantoms.

Johannes Krah.
A phantom on a rational surface.
Inventiones mathematicae, 235:1009–1018, 2023.

Alexander Kuznetsov.
Height of exceptional collections and hochschild cohomology of
quasiphantom categories.
Crelle’s Journal, 2015:213–243, 2012.

Amal Mattoo.
Objects of a phantom on a rational surface.

Amal Mattoo Phantoms on Rational Surfaces


