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Introduction

Slope stability m_) Bﬁdegland stability ‘
on curves on triangulated categroies
E € Coh(0) E € D*(Coh X)

Stability conditions have been proved to exist on D of varieties...

e Varieties whose derived category admits a full exceptional collection:
projective spaces P", quadrics Q" C P"*!, Grassmannians Gr(k, n).
Curves (= slope stability);

Surfaces (tilt stability);

Fano threefolds;

Abelian threefolds;

Quintic threefolds, and some other complete intersection CY; in P".



Kuznetsov components

Let Y C P"™! be a smooth cubic n-fold over C. The derived category DP(Y)
admits the semi-orthogonal decomposition

DY (Y) = (Ku(Y), By, Oy (1), ..., Oy (n — 2)), (1)
where the full subcategory
Ku(Y) = {E € D’(Y) | Vi€ {0,1,...,n - 2}, Ext*(Oy(i),E) = 0}

is called the Kuznetsov component of Y.



Kuznetsov components

Let Y C P"™! be a smooth cubic n-fold over C. The derived category DP(Y)
admits the semi-orthogonal decomposition

D*(Y) = (Ku(Y), Oy, Oy (1), ..., Oy (n — 2)), (1)
where the full subcategory
Ku(Y) = {E € D’(Y) | Vi€ {0,1,...,n - 2}, Ext*(Oy(i),E) = 0}
is called the Kuznetsov component of Y.

Known results

For a smooth cubic n-fold Y, there exists a Bridgeland stability condition on
Ku(Y):

e n = 3: Bernardara—Macri-Mehrotra—Stellari, 2012;

e n = 4: Bayer-Lahoz—Macri-Stellari, 2017;

e n=>5:



Strategy of proof

e Find a linear subspace P¥ C Y and construct a quadric fibration
Blpe Y — P @D

e Construct a fully faithful functor Ku(Y) < DP(P"*, &) to a “twisted”
derived category of P"*. @D

e Construct a weak stability condition on D*(P" %, %,). €D

e Restrict the weak stability condition on Ku(Y), which becomes a
stability condition. &
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Geometry of quadric fibrations




Geometric set-up

e Let V bsa (n+ 2)-dim vector space, A C V a (k + 1)-dim subspace, and
B :=V/A the (n — k + 1)-dim quotient space.

A< >V » B
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e Let V bsa (n+ 2)-dim vector space, A C V a (k + 1)-dim subspace, and
B :=V/A the (n — k + 1)-dim quotient space.

e Blowing up P(V) along the k-plane IT = P(A) C Y. Let E’ be the
exceptional divisor. Let H' := 7*Op(v) (1) and h" := q*Op(p) (1).
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Geometric set-up

e Let V bsa (n+ 2)-dim vector space, A C V a (k + 1)-dim subspace, and
B :=V/A the (n — k + 1)-dim quotient space.

e Blowing up P(V) along the k-plane IT = P(A) C Y. Let E’ be the
exceptional divisor. Let H' := 7*Op(v) (1) and h" := q*Op(p) (1).

e q: BlgyP(V) — P(B) is a P**!-fibration. Bl P(V) = Pp(p)(F), where

JF = (q*T*@]F(V)(l))V = @;;((;;1) D @p(g)(—l)
is locally free of rank (k + 2).

E < > B(V)

Oe——— 3 P(V) --—-=--==-1 > B(B)
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Geometric set-up

e Let V bsa (n+ 2)-dim vector space, A C V a (k + 1)-dim subspace, and
B :=V/A the (n — k + 1)-dim quotient space.

e Blowing up P(V) along the k-plane IT = P(A) C Y. Let E’ be the
exceptional divisor. Let H' := 7*Op(v) (1) and h" := q*Op(p) (1).

e q: BlgyP(V) — P(B) is a P**!-fibration. Bl P(V) = Pp(p)(F), where

* ~ k
JF = (q*T @]F(V)(l)) = @;9((3;1) D @p(g)(—l)

is locally free of rank (k + 2).

e Let Y C P(V) is a smooth cubic n-fold with IT C Y. Consider the
embedded blow-up. Note that H' — E’ = h’ and 3H’ — E’ =Y in Pic P(F).

4/21



Geometric set-up

e Let V bsa (n+ 2)-dim vector space, A C V a (k + 1)-dim subspace, and
B :=V/A the (n — k + 1)-dim quotient space.

e Blowing up P(V) along the k-plane IT = P(A) C Y. Let E’ be the
exceptional divisor. Let H' := 7*Op(v) (1) and h" := q*Op(p) (1).

e q: BlgyP(V) — P(B) is a P**!-fibration. Bl P(V) = Pp(p)(F), where

* ~ k
JF = (q*T @]P(V)(l)) = @1;?((3;1) D @]P(B)(_l)

is locally free of rank (k + 2).
e Let Y C P(V) is a smooth cubic n-fold with IT C Y. Consider the

embedded blow-up. Note that H' — E’ = h’ and 3H’ — E’ =Y in Pic P(F).
* 4.0p5)(Y) = q.0p(r)(2H" + ') = Sym® F~ ® Op(g) (1)

Hence Y is defined by a section of Sym? F~ ® Op(g) (1), or a quadratic

formQ: F — F ® Opp)(1).

T=qoa: Y — P(B) is a fibration in k-dimensional quadrics.

E—t Y% 3 P(F)

He—Y—3PV)——-mmmmo - P(B)
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Clifford sheaves (Kuznetsov, 2008)

Quadratic form Q -~~~ sheaf of Clifford algebras on P(B).
Even & odd parts:

G0 =P AN"F @ Oy (m), 1= D N™'F @ Op() (m).

m=0 m=0
Set %2_,' = (g() ® @]P(B) (]) and %Zj+1 = (gl ® @P(B) (]) for anyj € Z.

€ are flat right Gy-modules. Think of them as “line bundles” on (P(B), 6,), as
ﬁ,‘ ®(m %)/\— = \6),4/\—.
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Clifford sheaves (Kuznetsov, 2008)

Quadratic form Q -~~~ sheaf of Clifford algebras on P(B).
Even & odd parts:

G0 =P AN"F @ Oy (m), 1= D N™'F @ Op() (m).

m=0 m=0
Set €2 := 6o ® Op(p) (j) and €3j+1 := €1 ® Op(p)(j) for any j € Z.
€ are flat right Gy-modules. Think of them as “line bundles” on (P(B), 6,), as
€ 8%, €k = €k
Denote by

e Coh(P(B), %) the Abelian category of coherent right &,-modules;
e D"(P(B), %)) the derived category of coherent right &,-modules.

The forgetful functor Forg : D" (P(B), €,) — D"(P(B)) admits both left and
right adjoints:
(= By €o) 1 Forg 4 (- @, 5, G,)- (2)
The Serre functor of the category DP(P(B), %,):
S(E) = wp(B) ®0 E ®, G, [n—k].
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Semi-orthogonal decompositions
and mutations of D" (Y)



Semi-orthogonal decompositions on DP (Y)

E‘ >V <2 P(F)

P
H/3 P(V)____EP(B)

e The derived pull-back o* : DP ) — DP(Y) is fully faithful. Orlov’s
formula gives the SOD of DP(Y):

(6"D(Y), .p*DP (1), t.(p*DP(I1) ® Op(=E)), ..., t.(p"D"(IT) ® Op(~(n — k — 2)E)))
=(c" Ku(Y), O, ..., 6((n-2)H), 1.0, .., 1.0p(kH), ...,
1.Os(=(n—k = 2)E), ..., 1,0g(kH — (n — k — 2)E)).
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Semi-orthogonal decompositions on DP (Y)

E—t— ¥ <" P(F)

p
Héy;ﬂp(v) ________%‘ (B)

e The derived pull-back o* : DP ) — DP(Y) is fully faithful. Orlov’s
formula gives the SOD of D?(Y):

(6"D(Y), .p*DP (1), t.(p*DP(I1) ® Op(=E)), ..., t.(p"D"(IT) ® Op(~(n — k — 2)E)))
=(c" Ku(Y), O, ..., 6((n-2)H), 1.0, .., 1.0p(kH), ...,
1.Os(=(n—k = 2)E), ..., 1,0g(kH — (n — k — 2)E)).

e Fully faithful functor ® : DP(P(B), €y) — DP(Y),
®(F) = n°F ®prz, £, where £’ is a 776 y-module that fits into the SES:
0 —— q*6o(—2H) — q*61(—H) > a.E’ >0
There is an SOD of D"(Y) [Kuznetsov, 2008]:

(@D"(P(B), %), " D°(P(B)), 7*D"(P(B)) ® O(H), ..., 7*D*(P(B)) ® O((k — 1)H))
= (®DP(P(B), 6y), O, .... O((n—k)h), ....0((k = 1)H), ... O((k—1)H+ (n—k)h)). oz



Mutations on D"(Y)

Comparing the two SODs, for small (n, k) it is possible to use a sequence of
mutations to transform one into another:

e (n,k) =(3,1): the blow-up along a line in a cubic 3-fold induces a conic
fibration. DY (P2, B,) = (Ku(Y®), B;). [BMMS, 2012).
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Mutations on D"(Y)

Comparing the two SODs, for small (n, k) it is possible to use a sequence of
mutations to transform one into another:

e (n,k) =(3,1): the blow-up along a line in a cubic 3-fold induces a conic
fibration. DY (P2, B,) = (Ku(Y®), B;). [BMMS, 2012).

o (n,k) = (4,1): the blow-up along a line in a cubic 4-fold induces a conic
fibration. D*(P%, By) = (Ku(Y*), By, Ba, Bs). [BLMS, 2017).

e (n,k) = (4,2): the blow-up along the plane in a special cubic 4-fold
containing that plane:

DP(S, &) = DP(P?, @) ~ Ku(Y?). [Kuznetsov, 2009)

Ku(Y*) is considered as a non-commutative K3 surface. Kuznetsov’s
rationality conjecture: a smooth cubic 4-fold Y* is rational iff
Ku(Y*) =~ DP(S) for some K3 surface S.
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Mutations on D"(Y)

Comparing the two SODs, for small (n, k) it is possible to use a sequence of
mutations to transform one into another:

e (n,k) =(3,1): the blow-up along a line in a cubic 3-fold induces a conic
fibration. DY (P2, B,) = (Ku(Y®), B;). [BMMS, 2012).

o (n,k) = (4,1): the blow-up along a line in a cubic 4-fold induces a conic
fibration. D*(P%, By) = (Ku(Y*), By, Ba, Bs). [BLMS, 2017).

e (n,k) = (4,2): the blow-up along the plane in a special cubic 4-fold
containing that plane:

DP(S, @) ~ DP(P?, &,) ~ Ku(Y?). [Kuznetsov, 2009]

Ku(Y*) is considered as a non-commutative K3 surface. Kuznetsov’s
rationality conjecture: a smooth cubic 4-fold Y* is rational iff
Ku(Y*) =~ DP(S) for some K3 surface S.

e (n,k) = (5,2): the blow-up along a plane in a cubic 5-fold induces a
quadric surface fibration. D*(P%, €y) ~ (Ku(Y®), €1, €2). (new result)
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Mutations on D"(Y)

Mutations on a cubic 5-fold takes 14 steps!
D*(Y)
=(0(-H), ¢"Ku(Y), 0. O(H), 06(2H), 1.0g, 1.0p(H), 1.Op(2H), 1.0p(H - E), 1.05(2H - E), 1.0p(3H - E))
=(0(-H), o" Ku(Y), 0, 1.0g, O(H), 6(2H), 1.0p(H), 1.05(2H), 1,05(H - E), 1.0g(2H — E), 1.05(3H - E))
(Left mutation of 1. 6 through (6 (H), 6(2H)), using Lemma 2.5.())
=(6(-H), 0" Ku(Y), 6, 1,05, 6(H), 1.05(H), 6(2H), 1,0¢(2H), 1,05(H — E), 1.05(2H — E), 1.05(3H — E))
(Left mutation of 1.0 (H) through 6(2H), using Lemma 2.5.(i))
=(6(-H), o Ku(Y), 6(~-H +h), 6, 6(h), 6(H), 6(H+h), 6(2H), 1.6g(H - E), 1.65(2H — E), 1,65(3H — E))
(Left mutation of 1.6 (aH) through 6(aH) for a = 0, 1,2, using Lemma 2.5.(i))
=(6(~H), 6(~H +h), Ro(_psno” Ku(Y), 6, 6(h), 6(H), 6(H+h), 6(2H), 1.6g(H - E), 1.0p(2H — E), 1.0g(3H — E))
= (Ro(-prema* Ku(Y), 6, 6(h), 6(H), O(H+h), O(2H), 1.0g(H - E), 1.0p(2H - E), 1.Og(3H — E), O(H +2h), O(H +3h))
(Right mutation of (6(~H), ®(~H + h)) through its left orthogonal, using the Serre functor S = (- ® O(~2H — 2h))|5])
= (Ro(-p4m o* Ku(Y), 6, 6(h), 6(H), O(H+h), 6(2H), 1.05(h), 1.0p(H +h), 1,0p(2H +h), O(H +2h), O(H +3h))
(E=H-h)
= (Ro(-prem " Ku(Y), 6, 6(h), 6(H), O(H+h), O(2H), 1.0g(h), 1.0(H +h), O(H +2h), O(2H +h), O(H +3h))
(Right mutation of 1, Og (2H + h) through 6(H + 2h), using Lemma 2.5.(ii))
= (Ro(—am o* Ku(Y), 6, 6(h), 6(H), 6(H+h), Lo t0c(h). LouuOp(H+h), 6(2H), O(H +2h), 6(2H +h), O(H +3h))
= (Ro(_prema* Ku(Y), 0, O(h), O(H), O(H+h), Lo 08 (h). LomuOp(H+h), O(H+2h), 0(2H), O(H +3h), O(2H + h))
(Left mutation of O(H + 2h) through O(2H) and G (H + 3h) through 0(2H + h), using Lemma 2.5.(iv))
= (Ro(-pama* Ku(Y), 6, O(h), O(H), 6(H+h), Lo t.0g(h), LomuOp(H+h), 6(H+2h), 6(H+3h), 6(2H), 6(2H +h))
(Left mutation of 6(H + 3h) through 6(2H), using Lemma 2.5.(iv))
=(0(=2h), O(~h), Ro(pem o Ku(Y), 0, 6(h), O(H), O(H+h), Lo O (h), Lo t.Op(H+h), O(H +2h), 6(H +3h))

(Left mutation of (0(2H), 6(2H + h)) through its right orthogonal, using the Serre functor)
= (Lo-amLo-mRo(-pem 0" Ku(Y), 6(=2h), 6(=h), 6, O(h), 6(H), O(H +h), Lo tOr(h), LomtOp(H +h), 6(H+2h), 6(H +3h))
=(K, 6(=2h), 6(~h), 6, 6(h), 6(H), G(H+h), O(H +2h), G(H +3h))

(Left mutation of (Lo (zrr) 1 Or (h), Loz 1+ O (H + h)) through (6(~2h), 6(~h), 6, 6(h), G(H), 6(H + h)))
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Mutations on D"(Y)

Mutations on a cubic 5-fold takes 14 steps!

Not knowing of a general method, we conjecture that the fibration
Blpe Y — P"¥ in k-dimensional quadrics induces the equivalence

D (P", Bp) = (Ku(Y"), G, ., Gon—sk—2)

for all possible (n, k) with k < n/2.



Bridgeland stability conditions




Categorical set-up

e D a C-linear triangulated category, and Ko(D) its Grothendieck group.
e Fix a finite-rank lattice A and a surjective group homomorphism

v: Ko(D) — A
e A the heart of a bounded t-structure on D.



Categorical set-up

e D a C-linear triangulated category, and Ko(D) its Grothendieck group.
e Fix a finite-rank lattice A and a surjective group homomorphism
v: Ko(D) — A
o A the heart of a bounded t-structure on D.
Definition

A weak stability function is a group homomorphism Z : A — C such that,
for any E € A \ {0},

Z(w(E) e{z=m-e"™ |m>0, ¢ e (0,1]} =HUR,.

¢ = ¢(E) is called the phase of E. If we require further that Z(v(E)) # 0 for
E # 0, then Z is called a stability function.

An object E € A is called semi-stable (resp. stable) with respect to (A, 2), if
for any F < E with F ¢ E in A, one has ¢(F) < ¢(E/F) (resp. <).



Categorical set-up

e D a C-linear triangulated category, and Ko(D) its Grothendieck group.
e Fix a finite-rank lattice A and a surjective group homomorphism
v: Ko(D) — A
o A the heart of a bounded t-structure on D.
Definition

A weak stability function is a group homomorphism Z : A — C such that,
for any E € A \ {0},

Z(w(E) e{z=m-e"™ |m>0, ¢ e (0,1]} =HUR,.

¢ = ¢(E) is called the phase of E. If we require further that Z(v(E)) # 0 for
E # 0, then Z is called a stability function.

An object E € A is called semi-stable (resp. stable) with respect to (A, 2), if
for any F < E with F ¢ E in A, one has ¢(F) < ¢(E/F) (resp. <).
The slope of E with respect to Z:

Re Z(o(E))

yiz(E) = — cot(ng(E)) ={ mZ@E)’ Im Z(v(E)) > 0;
+0oo, otherwise.



(Weak) stability conditions

Definition

A (weak) stability condition on D wth respect to A is a pair o = (A, Z),
where A is the heart of a bounded t-structure on D,and Z4: A —» Cisa
(weak) stability function satisfying:

(i) (Harder—Narasimhan property) For any E € A, there exists a filtration

0=EyCEC-CE=E

by objects E; in A, such that the graded factors E;/E;_; are semi-stable of
phase ¢;, and
PT(E) i=¢1 > -+ > ¢y = ¢ (E).

(ii) (Support property) There exists a quadratic form Q on A ® R such that
Qlker z is negative definite, and Q(E) > 0 for semi-stable E € A.

The space of stability conditions Stab(D) has the structure of a complex
manifold of dimension equal to rk A, a celebrated result by Bridgeland.
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Slope stability

Let X be an n-dimensional smooth projective variety, and h € Pic X an ample
divisor class.

Example

The classical slope stability on D (X) is (Coh(X), Z,), where
Z,(E) = =h""" - chy(E) + ih" - cho(E),

is a weak stability condition with respect to the lattice generated by (chy, chy).

e The slope p(E) = _EEZ—Z((EE;; = hierngE is directly proportional to the

classical slope.

e The support property is satisfied by the trivial quadratic form Q = 0.
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Tilting stability conditions

Given the heart of a bounded t-structure A of D and u € R, consider the full
subcategories

TH={E e A| uz;(E) > u}; FH{E€ A| uy(E) < p}.
Then (T*, F*) is a torsion pair. The tilt
A= (T, L)
is a heart of bounded t-structure of D. The objects E € A" has cohomology
eT, i=0;
HY(E)Se F, i=-1;

=0, otherwise.

=
L
DN

F[-1] T[-1] F T Fl1] TI1]
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Tilting stability conditions

Let X be an n-dimensional smooth projective variety, and h € Pic X an ample
divisor class.

Example

For € R, we can tilt the heart Coh(X) at y = f§ to get a new heart Coh?(X).
Then the (first) tilt stability (Coh?(X), Zqp) Where

1
Zop(E) = k"2 - [ch? (E) - L chf (B) | +ih"" - chf (),

where ch?(E) := e " . ch(E), is a weak stability condition with respect to the
lattice generated by (chy, chy, chy).
The support property is given by the Bogomolov’s inequality:
A(E) := k"% . (chy(E)? — 2 chy(E) chy(E)) > 0,
which holds for p-semistable torsion-free sheaves E.
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Stability conditions on Ku(Y)




Weak tilt stability on D" (P3, €,)

Fix Y smooth cubic 5-fold, IT C Y a 2-plane. The quadric surface fibration
Bl;; Y — P2 induces:

DP(P%, %) =~ (Ku(Y), %1, %2); Bo =0 0(-1)® @ 06(-2)%° & 6(-3).
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Weak tilt stability on D" (P3, €,)

Fix Y smooth cubic 5-fold, IT C Y a 2-plane. The quadric surface fibration
Bl;; Y — P2 induces:

DP(P%, %) =~ (Ku(Y), %1, %2); Bo =0 0(-1)® @ 06(-2)%° & 6(-3).
e On D'(P% %,) we have the slope stability:
(COh(P3, (‘60)’ 74 = —hz Ch1 +ih3 Cho).
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Weak tilt stability on D" (P3, €,)

Fix Y smooth cubic 5-fold, IT C Y a 2-plane. The quadric surface fibration
Bl;; Y — P2 induces:

DY (P3, G,) ~ (Ku(Y), 61, %2); %o=006(-1)% & 0(-2)° & 6(-3).
e On D'(P% %,) we have the slope stability:

(Coh(P?,%,), Z = —h? ch; +ih® chy).
e Tiltitat y = B: consider the pair o, 5 = (Coh” (P%,%,), Z, 5) with

Zop(E) = (chﬁ (E) - —a 2chf (E)) +ih? chl | (E).
Here ché;O is a modified Chern character, defined by

chgo (E) :=ePh (1 = %hz) ch(Forg(E)).
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Weak tilt stability on D" (P3, €,)

Fix Y smooth cubic 5-fold, IT C Y a 2-plane. The quadric surface fibration
Bl;; Y — P2 induces:

DP(P%, %) =~ (Ku(Y), %1, %2); Bo =0 0(-1)® @ 06(-2)%° & 6(-3).
e On D'(P% %,) we have the slope stability:
(COh(P3, (‘60)’ 74 = —hz Ch1 +ih3 Ch()).

e Tilt it at 4 = f: consider the pair o, 5 = (Coh? (B3, %)), Zq p) With
Zop(E) = (chﬁ (E) - —a chﬁ (E)) +ih? ch@o’l(E).
Here ché;O is a modified Chern character, defined by
_ 3
chgo (E) := e Fh (1 = ghz) ch(Forg(E)).

e For support property, we need the modified Bogomolov inequality
Ag,(E) = chg,1(E)? - 2 chg,o(E) chg,2(E)
3
= Ch1 (E)2 =& Cho(E) Chg (E) P th Ch()(E) > 0.
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Weak tilt stability on D" (P3, €,)

1
Zop(E) = —h"2. (chf(E) -5 chf(E)) +ih"' - el (E),

chg, (E) := (1 - th) ch(Forg(E)).

3

The number —3

is chosen such that Ag, (€;) =0 for all j € Z.
Ag, (E) := chg,1(E)? - 2 chg, o(E) che, 2(E)

3
= chy (E)” ~ 2cho(E) chy(E) + Jh* cho(E) > 0.
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Weak tilt stability on D" (P3, €,)

1
Zop(E) = —h"2. (chf(E) -5 chf(E)) +ih"' - el (E),

chg, (E) := (1 - th) ch(Forg(E)).

3

The number —3

is chosen such that Ag, (€;) =0 for all j € Z.
Ag, (E) := Chqgo,l(E)2 -2 Ch;go’o(E) chg, 2 (E)

= chy(E)? — 2 cho(E) chy(E) + th cho(E) > 0.

To prove Ag, (E) > 0 for y-semistable E:

e [BLMS] Use a Langer-type restriction theorem to restrict on D (P?, &)
(the difficult part);
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Weak tilt stability on D" (P3, €,)

1
Zop(E) = —h"2. (chf(E) -5 chf(E)) +ih"' - el (E),

chg, (E) := (1 - th) ch(Forg(E)).

The number —g is chosen such that Ag, (€;) =0 for all j € Z.

Ag, (E) = chg, 1(E)® - 2 chg,o(E) chg, 2 (E)

= chy(E)? — 2 cho(E) chy(E) + th cho(E) > 0.

To prove Ag, (E) > 0 for y-semistable E:

e [BLMS] Use a Langer-type restriction theorem to restrict on D (P?, &)
(the difficult part);

e Inequality follows from Hirzebruch-Riemann—Roch on P? and the fact
that every €y-module has rank divisible by 8.

It is still a weak stability condition as all 0-dim sheaves lie in ker Z, .
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Inducing stability conditions on /Cu(Y)

Proposition ([ BLMS, Proposition 5.1])

Let 0 = (A, Z) be a weak stability condition on D with a Serre functor S.
Assume that D = (D4, Ey, ..., E;), where E; € D are exceptional objects. Then
o1 = (AN Dy, Z|p,) is a stability condition on Dy, if for i = 1, ..., m the
following conditions are satisfied:

(1) E; e A;

(2) S(E) € A[1];

(3) Z(E:) # 0;

(4) For non-zero object F in A; := AN Dy, Z(F) # 0;
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Proposition ([ BLMS, Proposition 5.1])

Let 0 = (A, Z) be a weak stability condition on D with a Serre functor S.
Assume that D = (D4, Ey, ..., E;), where E; € D are exceptional objects. Then
o1 = (AN Dy, Z|p,) is a stability condition on Dy, if for i = 1, ..., m the
following conditions are satisfied:

(1) E; e A;

(2) S(E) € A[1];

(3) Z(E;) # 0;

(4) For non-zero object F in A; := AN Dy, Z(F) # 0;

e Need to change the heart such that
Giljl € A, S(Gili]) =Gi—2[j +3] € A[1], i=12.
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Inducing stability conditions on /Cu(Y)

Proposition ([ BLMS, Proposition 5.1])

Let 0 = (A, Z) be a weak stability condition on D with a Serre functor S.
Assume that D = (D4, Ey, ..., E;), where E; € D are exceptional objects. Then
o1 = (AN Dy, Z|p,) is a stability condition on Dy, if for i = 1, ..., m the
following conditions are satisfied:

(1) E; e A;

(2) S(E) € A[1];

(3) Z(E;) # 0;

(4) For non-zero object F in A; := AN Dy, Z(F) # 0;

e Need to change the heart such that
Giljl € A, S(Gil[i]) =Gi—2[j +3] € A[1], i=1,2.
e For suitable (¢, ff), we have

Va,p(G-1[1]) < vap(Gol1]) <0 < v p(E1) < vap(62).
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Inducing stability conditions on /Cu(Y)

Proposition ([ BLMS, Proposition 5.1])

Let 0 = (A, Z) be a weak stability condition on D with a Serre functor S.
Assume that D = (D4, Ey, ..., E;), where E; € D are exceptional objects. Then
o1 = (AN Dy, Z|p,) is a stability condition on Dy, if for i = 1, ..., m the
following conditions are satisfied:

(1) E; e A;

(2) S(E) € A[1];

(3) Z(E;) # 0;

(4) For non-zero object F in A; := AN Dy, Z(F) # 0;

e Need to change the heart such that
Giljl € A, S(Gili]) =Gi—2[j +3] € A[1], i=12.
e For suitable (¢, ff), we have
Va g(G-1[1]) < vap(Gol1]) < 0 < v p(1) < vap(F2).
o Tilt cOhﬁ(P3 %) at vep = 0: Cohl 5 (B%, %,) = ( 2 Foul ]>
= (CohO [),(}P’3 6o), Z = —iZ,p) is a rotation ofoa,/; by3n/2.
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Stability conditions on Cu(Y)

Theorem

Let Y be a smooth cubic 5-fold. Ku(Y) has a family of Bridgeland stability
conditions
0% = (Cohl, 4 (B, G0) N Ku(¥), Z0 ylicurr) )

parametrised by {(a,ﬁ) eR? | —% <pf<-1,0<a<min {ﬁ+ 3-1- ,[3}}

It is a stability condition as ker Zgﬁ is generated by Cohgim=o(P3, €y) and
Cohgim=0 (P%, %o) N Ku(Y) = {0}.
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Stability conditions on Cu(Y)

Theorem

Let Y be a smooth cubic 5-fold. Ku(Y) has a family of Bridgeland stability
conditions

0% = (Cohl, 4 (B, G0) N Ku(¥), Z0 ylicurr) )

parametrised by {(a,ﬁ) eR? | —% <pf<-1,0<a<min {ﬁ+ %,—1 - ,[3}}

It is a stability condition as ker Zg’ﬁ is generated by Cohgim=o(P3, €y) and
Cohgim=o (P3, Bo) N Ku(Y) = {0}.
Further remarks:
e By Collins-Polishchuk gluing, DP(Y) = (Ku(Y), Oy, ..., Oy (3)) has
non-empty Stab(DP(Y)).
e The cr;’ ﬁ—(semi)stability of any E € Ku(Y) is independent of «, 5, and the
choice of the 2-plane IT C Y.
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Classical and Bridgeland
moduli spaces




The lattice of Kyym (lCu(Y))

For a cubic n-fold Y", the Serre functor S of Ku(Y") satisfies S® =~ [n + 2].
o Ku(Y?®)is a fractional %—CY category.
o Ku(Y*)is a CY, category (= K3 category).
e Ku(Y?) is a fractional %-CY category.

The stability condition ¢’ on Ku(Y") is Serre invariant: S- ¢’ C ¢’ - 61‘;r (R).
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The lattice of Kyym (lCu(Y))

For a cubic n-fold Y”, the Serre functor S of Ku(Y™) satisfies S* ~ [n + 2].

o Ku(Y?®)is a fractional %—CY category.

o Ku(Y*)is a CY, category (= K3 category).

e Ku(Y®) is a fractional %-CY category.
The stability condition ¢’ on Ku(Y") is Serre invariant: S- ¢’ C ¢’ - 61‘;r (R).
For smooth cubic 3-folds, 5-folds and general cubic 4-folds, Kyym (Ku(Y)) is a
rank 2 lattice spanned by the characters

k1 = [pr(Fim], K =~ [pr( (D)1,

Kg-axis

. . .
\ /
\ / S .
N7 K1-axis
R I T —

K1

Figure 1: Characters in Kyun, (Ku(Y®)) under the hexagonal coordinate.
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Moduli spaces on Ku(Y)

There are some well-known results on cubic 3-folds.
Theorem (BMMS 2009, Pertusi—Yang 2020, Feyzbakhsh—Pertusi 2023)

Let Y be a smooth cubic 3-fold. Then there are isomorphisms of moduli spaces
Mo (Ku(Y), k1) = Mo (Ku(Y), k2) = Mo (Ku(Y), k2 — k1) = Fi(Y),

where My (Ku(Y), k1) is the moduli space of o’ -stable objects in Ku(Y) with
character k1, and F1(Y) is the Fano surface of lines in Y.
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where My (Ku(Y), k1) is the moduli space of o’ -stable objects in Ku(Y) with
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Theorem (Categorical Torelli theorem for cubic 3-folds)

Let Y, Y’ be two cubic 3-folds. ThenY = Y' = Ku(Y) =~ Ku(Y’)
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Moduli spaces on Ku(Y)

There are some well-known results on cubic 3-folds.
Theorem (BMMS 2009, Pertusi—Yang 2020, Feyzbakhsh—Pertusi 2023)

Let Y be a smooth cubic 3-fold. Then there are isomorphisms of moduli spaces
Mo (Ku(Y), k1) = Mo (Ku(Y), k2) = Mo (Ku(Y), k2 — k1) = F1(Y),

where My (Ku(Y), k1) is the moduli space of o’ -stable objects in Ku(Y) with
character k1, and F1(Y) is the Fano surface of lines in Y.

Theorem (Categorical Torelli theorem for cubic 3-folds)

Let Y, Y’ be two cubic 3-folds. ThenY = Y' = Ku(Y) =~ Ku(Y’)

Idea: Ku(Y) =~ Ku(Y') = M,(Ku(Y), [F]) = My (Ku(Y’), [F¢])
= F(Y) = Fi(Y)
= Y=Y (geometric Torelli).
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Moduli spaces on Ku(Y)

Cubic 4-folds are more interesting from their connection with K3 surfaces and
hyper-Kahler manifolds.

Theorem (Bayer-Lahoz—Macri-Nuer—Perry-Stellari, 2021)

LetY be a cubic 4-fold. For a character v in the Mukai—Hodge lattice
H(Ku(Y),Z) and a stability condition o € Stab” (Ku(Y)), the moduli space
M, (Ku(Y),0) is a smooth projective hyper-Kihler manifold of K3 -type with
dimension equal to 2 — x(v,0).
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Moduli spaces on Ku(Y)

Cubic 4-folds are more interesting from their connection with K3 surfaces and
hyper-Kahler manifolds.

Theorem (Bayer-Lahoz—Macri-Nuer—Perry-Stellari, 2021)

LetY be a cubic 4-fold. For a character v in the Mukai—Hodge lattice
H(Ku(Y),Z) and a stability condition o € Stab” (Ku(Y)), the moduli space
M, (Ku(Y),0) is a smooth projective hyper-Kihler manifold of K3 -type with
dimension equal to 2 — x(v,0).

Theorem (Categorical Torelli theorem for cubic 4-folds)
(BLMS 2017, Li—Pertusi—Zhao 2020)

LetY,Y’ be two cubic 4-folds. Then Y = Y’ iff there is an equivalence
Ku(Y) — Ku(Y") whose induced map H(Ku(Y),Z) — H(Ku(Y’), Z)
commutes with the degree shift functor Lo(— ® O(1)).

20/21



Thank you for your attention!
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