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Introduction

Slope stability
on curves

Bridegland stability
on triangulated categroies

𝐸 ∈ Coh(𝐶) 𝐸 ∈ Db (Coh𝑋 )

generalise

Stability conditions have been proved to exist on Db of varieties…
• Varieties whose derived category admits a full exceptional collection:

projective spaces P𝑛 , quadrics 𝑄𝑛 ⊆ P𝑛+1, Grassmannians Gr(𝑘, 𝑛).
• Curves (= slope stability);
• Surfaces (tilt stability);
• Fano threefolds;
• Abelian threefolds;
• Quintic threefolds, and some other complete intersection CY3 in P𝑛 .

1 / 21



Introduction

Slope stability
on curves

Bridegland stability
on triangulated categroies

𝐸 ∈ Coh(𝐶) 𝐸 ∈ Db (Coh𝑋 )

generalise

Stability conditions have been proved to exist on Db of varieties…
• Varieties whose derived category admits a full exceptional collection:

projective spaces P𝑛 , quadrics 𝑄𝑛 ⊆ P𝑛+1, Grassmannians Gr(𝑘, 𝑛).
• Curves (= slope stability);
• Surfaces (tilt stability);
• Fano threefolds;
• Abelian threefolds;
• Quintic threefolds, and some other complete intersection CY3 in P𝑛 .

1 / 21



Kuznetsov components

Let 𝑌 ⊆ P𝑛+1 be a smooth cubic 𝑛-fold over C. The derived category Db (𝑌 )
admits the semi-orthogonal decomposition

Db (𝑌 ) = ⟨Ku(𝑌 ),𝒪𝑌 ,𝒪𝑌 (1), ...,𝒪𝑌 (𝑛 − 2)⟩ , (1)

where the full subcategory

Ku(𝑌 ) = {
𝐸 ∈ Db (𝑌 ) | ∀ 𝑖 ∈ {0, 1, ..., 𝑛 − 2}, Ext• (𝒪𝑌 (𝑖), 𝐸) = 0

}
is called the Kuznetsov component of 𝑌 .

Known results
For a smooth cubic 𝑛-fold 𝑌 , there exists a Bridgeland stability condition on
Ku(𝑌 ):

• 𝑛 = 3: Bernardara–Macr̀ı–Mehrotra–Stellari, 2012;
• 𝑛 = 4: Bayer–Lahoz–Macr̀ı–Stellari, 2017;
• 𝑛 = 5: ongoing project.

The current method cannot be generalised to 𝑛 ⩾ 6!
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Strategy of proof

• Find a linear subspace P𝑘 ⊆ 𝑌 and construct a quadric fibration
BlP𝑘 𝑌 → P𝑛−𝑘 . →

• Construct a fully faithful functor Ku(𝑌 ) ↩→ Db (P𝑛−𝑘 ,𝒞0) to a “twisted”
derived category of P𝑛−𝑘 . →

• Construct a weak stability condition on Db (P𝑛−𝑘 ,𝒞0). →

• Restrict the weak stability condition on Ku(𝑌 ), which becomes a
stability condition. →
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Geometry of quadric fibrations



Geometric set-up

• Let 𝑉 bs a (𝑛 + 2)-dim vector space, 𝐴 ⊆ 𝑉 a (𝑘 + 1)-dim subspace, and
𝐵 :=𝑉 /𝐴 the (𝑛 − 𝑘 + 1)-dim quotient space.

• Blowing up P(𝑉 ) along the 𝑘-plane 𝛱 = P(𝐴) ⊆ 𝑌 . Let 𝐸′ be the
exceptional divisor. Let 𝐻 ′ := 𝜏∗𝒪P(𝑉 ) (1) and ℎ′ := 𝑞∗𝒪P(𝐵) (1).

• 𝑞 : Bl𝛱 P(𝑉 ) → P(𝐵) is a P𝑘+1-fibration. Bl𝛱 P(𝑉 ) = PP(𝐵) (F), where

F :=
(
𝑞∗𝜏∗𝒪P(𝑉 ) (1)

)∨
� 𝒪

⊕(𝑘+1)
P(𝐵) ⊕ 𝒪P(𝐵) (−1)

is locally free of rank (𝑘 + 2).
• Let 𝑌 ⊆ P(𝑉 ) is a smooth cubic 𝑛-fold with 𝛱 ⊆ 𝑌 . Consider the

embedded blow-up. Note that 𝐻 ′ − 𝐸′ = ℎ′ and 3𝐻 ′ − 𝐸′ = 𝑌 in Pic P(F).
• 𝑞∗𝒪P(F ) (𝑌 ) = 𝑞∗𝒪P(F ) (2𝐻 ′ + ℎ′) � Sym2 F∨ ⊗ 𝒪P(𝐵) (1).

Hence 𝑌 is defined by a section of Sym2 F∨ ⊗ 𝒪P(𝐵) (1), or a quadratic
form 𝑄 : F −→ F∨ ⊗ 𝒪P(𝐵) (1).
𝜋 = 𝑞 ◦ 𝛼 : 𝑌 → P(𝐵) is a fibration in 𝑘-dimensional quadrics. Back

𝐴 𝑉 𝐵
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𝛱 P(𝑉 ) P(𝐵)

𝜏 𝑞
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Clifford sheaves (Kuznetsov, 2008)

Quadratic form 𝑄 sheaf of Clifford algebras on P(𝐵).
Even & odd parts:

𝒞0 :=
∞⊕

𝑚=0

∧2𝑚F ⊗ 𝒪P(𝐵) (𝑚), 𝒞1 :=
∞⊕

𝑚=0

∧2𝑚+1F ⊗ 𝒪P(𝐵) (𝑚).

Set 𝒞2𝑗 :=𝒞0 ⊗ 𝒪P(𝐵) ( 𝑗) and 𝒞2𝑗+1 :=𝒞1 ⊗ 𝒪P(𝐵) ( 𝑗) for any 𝑗 ∈ Z.
𝒞𝑗 are flat right 𝒞0-modules. Think of them as “line bundles” on (P(𝐵),𝒞0), as
𝒞𝑗 ⊗𝒞0 𝒞𝑘 � 𝒞𝑗+𝑘 .

Denote by
• Coh(P(𝐵),𝒞0) the Abelian category of coherent right 𝒞0-modules;
• Db (P(𝐵),𝒞0) the derived category of coherent right 𝒞0-modules.

The forgetful functor Forg : Db (P(𝐵),𝒞0) → Db (P(𝐵)) admits both left and
right adjoints:

(− ⊗𝒪P(𝐵) 𝒞0) ⊣ Forg ⊣ (− ⊗𝒪P(𝐵) 𝒞
∨

0 ). (2)
The Serre functor of the category Db (P(𝐵),𝒞0):

S(𝐸) = 𝜔P(𝐵) ⊗𝒪 𝐸 ⊗𝒞0 𝒞
∨

0 [𝑛 − 𝑘] .

5 / 21



Clifford sheaves (Kuznetsov, 2008)

Quadratic form 𝑄 sheaf of Clifford algebras on P(𝐵).
Even & odd parts:

𝒞0 :=
∞⊕

𝑚=0

∧2𝑚F ⊗ 𝒪P(𝐵) (𝑚), 𝒞1 :=
∞⊕

𝑚=0

∧2𝑚+1F ⊗ 𝒪P(𝐵) (𝑚).

Set 𝒞2𝑗 :=𝒞0 ⊗ 𝒪P(𝐵) ( 𝑗) and 𝒞2𝑗+1 :=𝒞1 ⊗ 𝒪P(𝐵) ( 𝑗) for any 𝑗 ∈ Z.
𝒞𝑗 are flat right 𝒞0-modules. Think of them as “line bundles” on (P(𝐵),𝒞0), as
𝒞𝑗 ⊗𝒞0 𝒞𝑘 � 𝒞𝑗+𝑘 .

Denote by
• Coh(P(𝐵),𝒞0) the Abelian category of coherent right 𝒞0-modules;
• Db (P(𝐵),𝒞0) the derived category of coherent right 𝒞0-modules.

The forgetful functor Forg : Db (P(𝐵),𝒞0) → Db (P(𝐵)) admits both left and
right adjoints:

(− ⊗𝒪P(𝐵) 𝒞0) ⊣ Forg ⊣ (− ⊗𝒪P(𝐵) 𝒞
∨

0 ). (2)
The Serre functor of the category Db (P(𝐵),𝒞0):

S(𝐸) = 𝜔P(𝐵) ⊗𝒪 𝐸 ⊗𝒞0 𝒞
∨

0 [𝑛 − 𝑘] .
5 / 21



Semi-orthogonal decompositions
and mutations of Db(�̃� )



Semi-orthogonal decompositions on Db(�̃� )

𝐸 𝑌 P(F)

𝛱 𝑌 P(𝑉 ) P(𝐵)

𝜄

𝑝

𝛼

𝜎 𝜋𝜏 𝑞

• The derived pull-back 𝜎∗ : Db (𝑌 ) → Db (𝑌 ) is fully faithful. Orlov’s
formula gives the SOD of Db (𝑌 ):
〈
𝜎∗Db (𝑌 ), 𝜄∗𝑝∗Db (𝛱 ), 𝜄∗ (𝑝∗Db (𝛱 ) ⊗ 𝒪𝐸 (−𝐸)), ..., 𝜄∗ (𝑝∗Db (𝛱 ) ⊗ 𝒪𝐸 (−(𝑛 − 𝑘 − 2)𝐸))〉
= ⟨𝜎∗ Ku(𝑌 ), 𝒪, ..., 𝒪((𝑛 − 2)𝐻 ), 𝜄∗𝒪𝐸, ..., 𝜄∗𝒪𝐸 (𝑘𝐻 ), ...,

𝜄∗𝒪𝐸 (−(𝑛 − 𝑘 − 2)𝐸), ..., 𝜄∗𝒪𝐸 (𝑘𝐻 − (𝑛 − 𝑘 − 2)𝐸)⟩.

• Fully faithful functor𝛷 : Db (P(𝐵),𝒞0) → Db (𝑌 ),
𝛷 (𝐹 ) = 𝜋∗𝐹 ⊗𝜋∗𝒞0 E ′, where E ′ is a 𝜋∗

𝒞0-module that fits into the SES:
0 𝑞∗𝒞0 (−2𝐻 ) 𝑞∗𝒞1 (−𝐻 ) 𝛼∗E ′ 0

There is an SOD of Db (𝑌 ) [Kuznetsov, 2008]:
〈
𝛷Db (P(𝐵),𝒞0), 𝜋∗Db (P(𝐵)), 𝜋∗Db (P(𝐵)) ⊗ 𝒪(𝐻 ), ..., 𝜋∗Db (P(𝐵)) ⊗ 𝒪((𝑘 − 1)𝐻 )〉
= ⟨𝛷Db (P(𝐵),𝒞0), 𝒪, ..., 𝒪((𝑛 − 𝑘)ℎ), ...,𝒪((𝑘 − 1)𝐻 ), ..., 𝒪((𝑘 − 1)𝐻 + (𝑛 − 𝑘)ℎ)⟩.
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Mutations on Db(�̃� )

Comparing the two SODs, for small (𝑛, 𝑘) it is possible to use a sequence of
mutations to transform one into another:

• (𝑛, 𝑘) = (3, 1): the blow-up along a line in a cubic 3-fold induces a conic
fibration. Db (P2,B0) ≃

〈
𝐾𝑢 (𝑌 3), B1

〉
. [BMMS, 2012].

• (𝑛, 𝑘) = (4, 1): the blow-up along a line in a cubic 4-fold induces a conic
fibration. Db(P3,B0) ≃

〈
𝐾𝑢 (𝑌 4), B1, B2, B3

〉
. [BLMS, 2017].

• (𝑛, 𝑘) = (4, 2): the blow-up along the plane in a special cubic 4-fold
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Mutations on Db(�̃� )

Mutations on a cubic 5-fold takes 14 steps!

Proposition 2.6

The subcategory𝛷Db(P3,𝒞0) of Db(𝑌 ) admits the semi-orthogonal decomposition:
〈
L𝒪 (−2ℎ)L𝒪 (−ℎ)R𝒪 (−𝐻+ℎ)𝜎∗Ku(𝑌 ), L⊥𝛷Db (P3,𝒞0 )L𝒪 (2𝐻 )𝜄∗𝒪𝐸 (ℎ), L⊥𝛷Db (P3,𝒞0 )L𝒪 (2𝐻 )𝜄∗𝒪𝐸 (𝐻 + ℎ)〉 .

Proof. Starting from the SOD (2-1) of Db(𝑌 ), we perform a sequence of mutations. For each line, the objects
marked in red are mutated through the objects marked in blue.

Db (𝑌 )
= ⟨𝒪 (−𝐻 ), 𝜎∗ Ku(𝑌 ), 𝒪, 𝒪 (𝐻 ), 𝒪 (2𝐻 ), 𝜄∗𝒪𝐸 , 𝜄∗𝒪𝐸 (𝐻 ), 𝜄∗𝒪𝐸 (2𝐻 ), 𝜄∗𝒪𝐸 (𝐻 − 𝐸 ), 𝜄∗𝒪𝐸 (2𝐻 − 𝐸 ), 𝜄∗𝒪𝐸 (3𝐻 − 𝐸 ) ⟩
= ⟨𝒪 (−𝐻 ), 𝜎∗ Ku(𝑌 ), 𝒪, 𝜄∗𝒪𝐸 , 𝒪 (𝐻 ), 𝒪 (2𝐻 ), 𝜄∗𝒪𝐸 (𝐻 ), 𝜄∗𝒪𝐸 (2𝐻 ), 𝜄∗𝒪𝐸 (𝐻 − 𝐸 ), 𝜄∗𝒪𝐸 (2𝐻 − 𝐸 ), 𝜄∗𝒪𝐸 (3𝐻 − 𝐸 ) ⟩

(Left mutation of 𝜄∗𝒪𝐸 through ⟨𝒪 (𝐻 ),𝒪 (2𝐻 ) ⟩, using Lemma 2.5.(i))
= ⟨𝒪 (−𝐻 ), 𝜎∗ Ku(𝑌 ), 𝒪, 𝜄∗𝒪𝐸 , 𝒪 (𝐻 ), 𝜄∗𝒪𝐸 (𝐻 ), 𝒪 (2𝐻 ), 𝜄∗𝒪𝐸 (2𝐻 ), 𝜄∗𝒪𝐸 (𝐻 − 𝐸 ), 𝜄∗𝒪𝐸 (2𝐻 − 𝐸 ), 𝜄∗𝒪𝐸 (3𝐻 − 𝐸 ) ⟩

(Left mutation of 𝜄∗𝒪𝐸 (𝐻 ) through 𝒪 (2𝐻 ) , using Lemma 2.5.(i))
= ⟨𝒪 (−𝐻 ), 𝜎∗ Ku(𝑌 ), 𝒪 (−𝐻 + ℎ), 𝒪, 𝒪 (ℎ), 𝒪 (𝐻 ), 𝒪 (𝐻 + ℎ), 𝒪 (2𝐻 ), 𝜄∗𝒪𝐸 (𝐻 − 𝐸 ), 𝜄∗𝒪𝐸 (2𝐻 − 𝐸 ), 𝜄∗𝒪𝐸 (3𝐻 − 𝐸 ) ⟩

(Left mutation of 𝜄∗𝒪𝐸 (𝑎𝐻 ) through 𝒪 (𝑎𝐻 ) for 𝑎 = 0, 1, 2, using Lemma 2.5.(ii))
=

〈
𝒪 (−𝐻 ), 𝒪 (−𝐻 + ℎ), R𝒪 (−𝐻+ℎ)𝜎∗ Ku(𝑌 ), 𝒪, 𝒪 (ℎ), 𝒪 (𝐻 ), 𝒪 (𝐻 + ℎ), 𝒪 (2𝐻 ), 𝜄∗𝒪𝐸 (𝐻 − 𝐸 ), 𝜄∗𝒪𝐸 (2𝐻 − 𝐸 ), 𝜄∗𝒪𝐸 (3𝐻 − 𝐸 )〉

=
〈
R𝒪 (−𝐻+ℎ)𝜎∗ Ku(𝑌 ), 𝒪, 𝒪 (ℎ), 𝒪 (𝐻 ), 𝒪 (𝐻 + ℎ), 𝒪 (2𝐻 ), 𝜄∗𝒪𝐸 (𝐻 − 𝐸 ), 𝜄∗𝒪𝐸 (2𝐻 − 𝐸 ), 𝜄∗𝒪𝐸 (3𝐻 − 𝐸 ), 𝒪 (𝐻 + 2ℎ), 𝒪 (𝐻 + 3ℎ)〉

(Right mutation of ⟨𝒪 (−𝐻 ),𝒪 (−𝐻 + ℎ) ⟩ through its left orthogonal, using the Serre functor S = (− ⊗ 𝒪 (−2𝐻 − 2ℎ) ) [5])
=

〈
R𝒪 (−𝐻+ℎ)𝜎∗ Ku(𝑌 ), 𝒪, 𝒪 (ℎ), 𝒪 (𝐻 ), 𝒪 (𝐻 + ℎ), 𝒪 (2𝐻 ), 𝜄∗𝒪𝐸 (ℎ), 𝜄∗𝒪𝐸 (𝐻 + ℎ), 𝜄∗𝒪𝐸 (2𝐻 + ℎ), 𝒪 (𝐻 + 2ℎ), 𝒪 (𝐻 + 3ℎ)〉

(𝐸 =𝐻 − ℎ)
=

〈
R𝒪 (−𝐻+ℎ)𝜎∗ Ku(𝑌 ), 𝒪, 𝒪 (ℎ), 𝒪 (𝐻 ), 𝒪 (𝐻 + ℎ), 𝒪 (2𝐻 ), 𝜄∗𝒪𝐸 (ℎ), 𝜄∗𝒪𝐸 (𝐻 + ℎ), 𝒪 (𝐻 + 2ℎ), 𝒪 (2𝐻 + ℎ), 𝒪 (𝐻 + 3ℎ)〉

(Right mutation of 𝜄∗𝒪𝐸 (2𝐻 + ℎ) through 𝒪 (𝐻 + 2ℎ) , using Lemma 2.5.(iii))
=

〈
R𝒪 (−𝐻+ℎ)𝜎∗ Ku(𝑌 ), 𝒪, 𝒪 (ℎ), 𝒪 (𝐻 ), 𝒪 (𝐻 + ℎ), L𝒪 (2𝐻 ) 𝜄∗𝒪𝐸 (ℎ), L𝒪 (2𝐻 ) 𝜄∗𝒪𝐸 (𝐻 + ℎ), 𝒪 (2𝐻 ), 𝒪 (𝐻 + 2ℎ), 𝒪 (2𝐻 + ℎ), 𝒪 (𝐻 + 3ℎ)〉

=
〈
R𝒪 (−𝐻+ℎ)𝜎∗ Ku(𝑌 ), 𝒪, 𝒪 (ℎ), 𝒪 (𝐻 ), 𝒪 (𝐻 + ℎ), L𝒪 (2𝐻 ) 𝜄∗𝒪𝐸 (ℎ), L𝒪 (2𝐻 ) 𝜄∗𝒪𝐸 (𝐻 + ℎ), 𝒪 (𝐻 + 2ℎ), 𝒪 (2𝐻 ), 𝒪 (𝐻 + 3ℎ), 𝒪 (2𝐻 + ℎ)〉

(Left mutation of 𝒪 (𝐻 + 2ℎ) through 𝒪 (2𝐻 ) and 𝒪 (𝐻 + 3ℎ) through 𝒪 (2𝐻 + ℎ) , using Lemma 2.5.(iv))
=

〈
R𝒪 (−𝐻+ℎ)𝜎∗ Ku(𝑌 ), 𝒪, 𝒪 (ℎ), 𝒪 (𝐻 ), 𝒪 (𝐻 + ℎ), L𝒪 (2𝐻 ) 𝜄∗𝒪𝐸 (ℎ), L𝒪 (2𝐻 ) 𝜄∗𝒪𝐸 (𝐻 + ℎ), 𝒪 (𝐻 + 2ℎ), 𝒪 (𝐻 + 3ℎ), 𝒪 (2𝐻 ), 𝒪 (2𝐻 + ℎ)〉

(Left mutation of 𝒪 (𝐻 + 3ℎ) through 𝒪 (2𝐻 ) , using Lemma 2.5.(iv))
=

〈
𝒪 (−2ℎ), 𝒪 (−ℎ), R𝒪 (−𝐻+ℎ)𝜎∗ Ku(𝑌 ), 𝒪, 𝒪 (ℎ), 𝒪 (𝐻 ), 𝒪 (𝐻 + ℎ), L𝒪 (2𝐻 ) 𝜄∗𝒪𝐸 (ℎ), L𝒪 (2𝐻 ) 𝜄∗𝒪𝐸 (𝐻 + ℎ), 𝒪 (𝐻 + 2ℎ), 𝒪 (𝐻 + 3ℎ)〉

(Left mutation of ⟨𝒪 (2𝐻 ),𝒪 (2𝐻 + ℎ) ⟩ through its right orthogonal, using the Serre functor)
=

〈
L𝒪 (−2ℎ)L𝒪 (−ℎ)R𝒪 (−𝐻+ℎ)𝜎∗ Ku(𝑌 ), 𝒪 (−2ℎ), 𝒪 (−ℎ), 𝒪, 𝒪 (ℎ), 𝒪 (𝐻 ), 𝒪 (𝐻 + ℎ), L𝒪 (2𝐻 ) 𝜄∗𝒪𝐸 (ℎ), L𝒪 (2𝐻 ) 𝜄∗𝒪𝐸 (𝐻 + ℎ), 𝒪 (𝐻 + 2ℎ), 𝒪 (𝐻 + 3ℎ)〉

= ⟨K, 𝒪 (−2ℎ), 𝒪 (−ℎ), 𝒪, 𝒪 (ℎ), 𝒪 (𝐻 ), 𝒪 (𝐻 + ℎ), 𝒪 (𝐻 + 2ℎ), 𝒪 (𝐻 + 3ℎ) ⟩
(Left mutation of

〈
L𝒪 (2𝐻 ) 𝜄∗𝒪𝐸 (ℎ), L𝒪 (2𝐻 ) 𝜄∗𝒪𝐸 (𝐻 + ℎ)〉 through ⟨𝒪 (−2ℎ), 𝒪 (−ℎ), 𝒪, 𝒪 (ℎ), 𝒪 (𝐻 ), 𝒪 (𝐻 + ℎ) ⟩)

where the subcategory K is defined by
〈
L𝒪 (−2ℎ)L𝒪 (−ℎ)R𝒪 (−𝐻+ℎ)𝜎∗Ku(𝑌 ), L⟨𝒪 (−2ℎ), 𝒪 (−ℎ), 𝒪, 𝒪 (ℎ), 𝒪 (𝐻 ), 𝒪 (𝐻+ℎ), 𝒪 (2𝐻 ) ⟩ ⟨𝜄∗𝒪𝐸 (ℎ), 𝜄∗𝒪𝐸 (𝐻 + ℎ)⟩〉 .

Comparing with the SOD (2-2) we deduce that K ≃ 𝛷Db(P3,𝒞0). Moreover, since
L𝒪 (2𝐻 ) ⟨𝜄∗𝒪𝐸 (ℎ), 𝜄∗𝒪𝐸 (𝐻 + ℎ)⟩ ⊆ ⟨𝒪(𝐻 + 2ℎ), 𝒪(𝐻 + 3ℎ)⟩⊥, we have

L⟨𝒪 (−2ℎ), 𝒪 (−ℎ), 𝒪, 𝒪 (ℎ), 𝒪 (𝐻 ), 𝒪 (𝐻+ℎ), 𝒪 (2𝐻 ) ⟩ ⟨𝜄∗𝒪𝐸 (ℎ), 𝜄∗𝒪𝐸 (𝐻 + ℎ)⟩
= L⟨𝒪 (−2ℎ), 𝒪 (−ℎ), 𝒪, 𝒪 (ℎ), 𝒪 (𝐻 ), 𝒪 (𝐻+ℎ), 𝒪 (𝐻+2ℎ), 𝒪 (𝐻+3ℎ), 𝒪 (2𝐻 ) ⟩ ⟨𝜄∗𝒪𝐸 (ℎ), 𝜄∗𝒪𝐸 (𝐻 + ℎ)⟩
= L⟨𝜋∗Db (P3 ), 𝜋∗Db (P3 )⊗𝒪 (𝐻 )⟩L𝒪 (2𝐻 ) ⟨𝜄∗𝒪𝐸 (ℎ), 𝜄∗𝒪𝐸 (𝐻 + ℎ)⟩
= L⊥𝛷Db (P3,𝒞0 )L𝒪 (2𝐻 ) ⟨𝜄∗𝒪𝐸 (ℎ), 𝜄∗𝒪𝐸 (𝐻 + ℎ)⟩ . □

2.3 Proof of Theorem 2.4

The proof of Theorem 2.4 is reduced to compute the action of 𝛹 on the SOD factors of 𝛷Db(P3,𝒞0), which is
divided into several lemmata.
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Mutations on Db(�̃� )

Mutations on a cubic 5-fold takes 14 steps!
Not knowing of a general method, we conjecture that the fibration
BlP𝑘 𝑌𝑛 → P𝑛−𝑘 in 𝑘-dimensional quadrics induces the equivalence

Db (P𝑛−𝑘 ,𝒞0) ≃ ⟨Ku(𝑌𝑛), 𝒞1, ..., 𝒞2𝑛−3𝑘−2⟩

for all possible (𝑛, 𝑘) with 𝑘 ⩽ 𝑛/2.

8 / 21



Bridgeland stability conditions



Categorical set-up

• D a C-linear triangulated category, and K0 (D) its Grothendieck group.
• Fix a finite-rank lattice 𝛬 and a surjective group homomorphism
𝑣 : K0 (D) → 𝛬.

• A the heart of a bounded t-structure on D.

Definition
A weak stability function is a group homomorphism 𝑍 : 𝛬 → C such that,
for any 𝐸 ∈ A \ {0},

𝑍 (𝑣 (𝐸)) ∈ {
𝑧 =𝑚 · ei𝜋𝜙 | 𝑚 ⩾ 0, 𝜙 ∈ (0, 1]} = H ∪ R⩽0.

𝜙 = 𝜙 (𝐸) is called the phase of 𝐸. If we require further that 𝑍 (𝑣 (𝐸)) ≠ 0 for
𝐸 ≠ 0, then 𝑍 is called a stability function.

An object 𝐸 ∈ A is called semi-stable (resp. stable) with respect to (A, 𝑍 ), if
for any 𝐹 ↩→ 𝐸 with 𝐹 � 𝐸 in A, one has 𝜙 (𝐹 ) ⩽ 𝜙 (𝐸/𝐹 ) (resp. <).
The slope of 𝐸 with respect to 𝑍 :

𝜇𝑍 (𝐸) = − cot(𝜋𝜙 (𝐸)) =
{
− Re𝑍 (𝑣 (𝐸 ) )

Im𝑍 (𝑣 (𝐸 ) ) , Im𝑍 (𝑣 (𝐸)) > 0;
+∞, otherwise.
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(Weak) stability conditions

Definition
A (weak) stability condition on D wth respect to 𝛬 is a pair 𝜎 = (A, 𝑍 ),
where A is the heart of a bounded t-structure on D, and 𝑍A : 𝛬 → C is a
(weak) stability function satisfying:

(i) (Harder–Narasimhan property) For any 𝐸 ∈ A, there exists a filtration

0 = 𝐸0 ⊊ 𝐸1 ⊊ · · · ⊊ 𝐸ℓ =: 𝐸

by objects 𝐸𝑖 in A, such that the graded factors 𝐸𝑖/𝐸𝑖−1 are semi-stable of
phase 𝜙𝑖 , and

𝜙+ (𝐸) := 𝜙1 > · · · > 𝜙ℓ =: 𝜙− (𝐸).
(ii) (Support property) There exists a quadratic form 𝑄 on 𝛬 ⊗ R such that

𝑄 |ker𝑍 is negative definite, and 𝑄 (𝐸) ⩾ 0 for semi-stable 𝐸 ∈ A.

The space of stability conditions Stab(D) has the structure of a complex
manifold of dimension equal to rk 𝛬, a celebrated result by Bridgeland.
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Slope stability

Let 𝑋 be an 𝑛-dimensional smooth projective variety, and ℎ ∈ Pic𝑋 an ample
divisor class.

Example

The classical slope stability on Db (𝑋 ) is (Coh(𝑋 ), 𝑍𝜇), where

𝑍𝜇 (𝐸) = −ℎ𝑛−1 · ch1 (𝐸) + iℎ𝑛 · ch0 (𝐸),

is a weak stability condition with respect to the lattice generated by (ch0, ch1).
• The slope 𝜇 (𝐸) = − Re𝑍 (𝑣 (𝐸 ) )

Im𝑍 (𝑣 (𝐸 ) ) =
deg𝐸
ℎ𝑛 rk𝐸 is directly proportional to the

classical slope.
• The support property is satisfied by the trivial quadratic form 𝑄 = 0.
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Tilting stability conditions

Given the heart of a bounded t-structure A of D and 𝜇 ∈ R, consider the full
subcategories

T 𝜇 =
{
𝐸 ∈ A | 𝜇−𝑍 (𝐸) > 𝜇

}
; F 𝜇

{
𝐸 ∈ A | 𝜇+𝑍 (𝐸) ⩽ 𝜇

}
.

Then (T 𝜇,F 𝜇) is a torsion pair. The tilt

A𝜇 := ⟨T 𝜇, F 𝜇 [1]⟩
is a heart of bounded t-structure of D. The objects 𝐸 ∈ A𝜇 has cohomology

H𝑖 (𝐸)


∈ T , 𝑖 = 0;
∈ F , 𝑖 = −1;
= 0, otherwise.

T [−1] T T [1]F F [1]F [−1]

A[−1] A A[1]

A𝜇 [−1] A𝜇
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Tilting stability conditions

Let 𝑋 be an 𝑛-dimensional smooth projective variety, and ℎ ∈ Pic𝑋 an ample
divisor class.

Example

For 𝛽 ∈ R, we can tilt the heart Coh(𝑋 ) at 𝜇 = 𝛽 to get a new heart Coh𝛽 (𝑋 ).
Then the (first) tilt stability (Coh𝛽 (𝑋 ), 𝑍𝛼,𝛽 ) where

𝑍𝛼,𝛽 (𝐸) := −ℎ𝑛−2 ·
(
ch𝛽

2 (𝐸) −
1
2𝛼

2 ch𝛽
0 (𝐸)

)
+ iℎ𝑛−1 · ch𝛽

1 (𝐸),

where ch𝛽 (𝐸) := e−𝛽ℎ · ch (𝐸), is a weak stability condition with respect to the
lattice generated by (ch0, ch1, ch2).

The support property is given by the Bogomolov’s inequality:

Δ(𝐸) := ℎ𝑛−2 · (ch1 (𝐸)2 − 2 ch0 (𝐸) ch2 (𝐸)) ⩾ 0,

which holds for 𝜇-semistable torsion-free sheaves 𝐸.
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Stability conditions on K𝒖(𝒀 )



Weak tilt stability on Db(P3,𝓒0)

Fix 𝑌 smooth cubic 5-fold, 𝛱 ⊆ 𝑌 a 2-plane. The quadric surface fibration
Bl𝛱 𝑌 → P3 induces:

Db (P3,𝒞0) ≃ ⟨Ku(𝑌 ),𝒞1,𝒞2⟩ ; 𝒞0 =𝒪 ⊕ 𝒪(−1)⊕3 ⊕ 𝒪(−2)⊕3 ⊕ 𝒪(−3).

• On Db (P3,𝒞0) we have the slope stability:
(Coh(P3,𝒞0), 𝑍 = −ℎ2 ch1 +iℎ3 ch0).

• Tilt it at 𝜇 = 𝛽 : consider the pair 𝜎𝛼,𝛽 = (Coh𝛽 (P3,𝒞0), 𝑍𝛼,𝛽 ) with

𝑍𝛼,𝛽 (𝐸) := −ℎ
(
ch𝛽

𝒞0,2(𝐸) −
1
2𝛼

2 ch𝛽
𝒞0,0(𝐸)

)
+ iℎ2 ch𝛽

𝒞0,1 (𝐸) .

Here ch𝛽
𝒞0

is a modified Chern character, defined by

ch𝛽
𝒞0
(𝐸) := e−𝛽ℎ

(
1 − 3

8ℎ
2
)

ch (Forg(𝐸)).

• For support property, we need the modified Bogomolov inequality
Δ𝒞0 (𝐸) := ch𝒞0,1(𝐸)2 − 2 ch𝒞0,0(𝐸) ch𝒞0,2 (𝐸)

= ch1 (𝐸)2 − 2 ch0 (𝐸) ch2 (𝐸) + 3
4ℎ

2 ch0 (𝐸) ⩾ 0. Back
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Weak tilt stability on Db(P3,𝓒0)

𝑍𝛼,𝛽 (𝐸) := −ℎ𝑛−2 ·
(
ch𝛽

2 (𝐸) −
1
2𝛼

2 ch𝛽
0 (𝐸)

)
+ iℎ𝑛−1 · ch𝛽

1 (𝐸),

ch𝒞0 (𝐸) :=
(
1 − 3

8ℎ
2
)

ch (Forg(𝐸)).

The number − 3
8 is chosen such that Δ𝒞0 (𝒞𝑗 ) = 0 for all 𝑗 ∈ Z.

Δ𝒞0 (𝐸) := ch𝒞0,1(𝐸)2 − 2 ch𝒞0,0 (𝐸) ch𝒞0,2(𝐸)
= ch1 (𝐸)2 − 2 ch0 (𝐸) ch2 (𝐸) + 3

4ℎ
2 ch0 (𝐸) ⩾ 0.

To prove Δ𝒞0 (𝐸) ⩾ 0 for 𝜇-semistable 𝐸:

• [BLMS] Use a Langer-type restriction theorem to restrict on Db (P2,𝒞0)
(the difficult part);

• Inequality follows from Hirzebruch–Riemann–Roch on P2 and the fact
that every 𝒞0-module has rank divisible by 8.

It is still a weak stability condition as all 0-dim sheaves lie in ker𝑍𝛼,𝛽 .
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Inducing stability conditions on K𝒖(𝒀 )

Proposition ([BLMS, Proposition 5.1])

Let 𝜎 = (A, 𝑍 ) be a weak stability condition on D with a Serre functor S.
Assume that D = ⟨D1, 𝐸1, ..., 𝐸𝑚⟩, where 𝐸𝑖 ∈ D are exceptional objects. Then
𝜎1 = (A ∩D1, 𝑍 |D1 ) is a stability condition on D1, if for 𝑖 = 1, ...,𝑚 the
following conditions are satisfied:
(1) 𝐸𝑖 ∈ A;
(2) S(𝐸) ∈ A[1];
(3) 𝑍 (𝐸𝑖 ) ≠ 0;
(4) For non-zero object 𝐹 in A1 :=A ∩D1, 𝑍 (𝐹 ) ≠ 0;

• Need to change the heart such that
𝒞𝑖 [ 𝑗] ∈ A, S(𝒞𝑖 [𝑖]) =𝒞𝑖−2 [ 𝑗 + 3] ∈ A[1], 𝑖 = 1, 2.

• For suitable (𝛼, 𝛽), we have
𝜈𝛼,𝛽 (𝒞−1 [1]) < 𝜈𝛼,𝛽 (𝒞0 [1]) < 0 < 𝜈𝛼,𝛽 (𝒞1) < 𝜈𝛼,𝛽 (𝒞2) .

• Tilt Coh𝛽 (P3,𝒞0) at 𝜈𝛼,𝛽 = 0: Coh0
𝛼,𝛽 (P3,𝒞0) =

〈
T 0
𝛼,𝛽
, F0

𝛼,𝛽
[1]

〉
.

𝜎0
𝛼,𝛽

= (Coh0
𝛼,𝛽 (P3,𝒞0), 𝑍 0

𝛼,𝛽
= −i𝑍𝛼,𝛽 ) is a rotation of 𝜎𝛼,𝛽 by 3𝜋/2.
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Stability conditions on K𝒖(𝒀 )

Theorem
Let 𝑌 be a smooth cubic 5-fold. Ku(𝑌 ) has a family of Bridgeland stability
conditions

𝜎 ′𝛼,𝛽 =
(
Coh0

𝛼,𝛽 (P3,𝒞0) ∩Ku(𝑌 ), 𝑍 0
𝛼,𝛽 |Ku(𝑌 )

)
,

parametrised by
{(𝛼, 𝛽) ∈ R2 | − 3

2 < 𝛽 < −1, 0 < 𝛼 < min
{
𝛽 + 3

2 ,−1 − 𝛽}}.
It is a stability condition as ker𝑍 0

𝛼,𝛽
is generated by Cohdim=0 (P3,𝒞0) and

Cohdim=0 (P3,𝒞0) ∩Ku(𝑌 ) = {0}.

Further remarks:
• By Collins–Polishchuk gluing, Db (𝑌 ) = ⟨Ku(𝑌 ),𝒪𝑌 , ...,𝒪𝑌 (3)⟩ has

non-empty Stab(Db(Y)).
• The 𝜎 ′

𝛼,𝛽
-(semi)stability of any 𝐸 ∈ Ku(𝑌 ) is independent of 𝛼, 𝛽 , and the

choice of the 2-plane 𝛱 ⊆ 𝑌 .
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Classical and Bridgeland
moduli spaces



The lattice of Knum(K𝒖(𝒀 ))

For a cubic 𝑛-fold 𝑌𝑛 , the Serre functor S of Ku(𝑌𝑛) satisfies S3 ≃ [𝑛 + 2].
• Ku(𝑌 3) is a fractional 5

3 -CY category.
• Ku(𝑌 4) is a CY2 category (= K3 category).
• Ku(𝑌 5) is a fractional 7

3 -CY category.
The stability condition 𝜎 ′ on Ku(𝑌𝑛) is Serre invariant: S · 𝜎 ′ ⊆ 𝜎 ′ · G̃L+

2 (R).

For smooth cubic 3-folds, 5-folds and general cubic 4-folds, Knum (Ku(𝑌 )) is a
rank 2 lattice spanned by the characters

𝜅1 = [pr(ℐ𝛱 )], 𝜅2 = −[pr(ℐ𝛱 (1))] .

𝜅1

𝜅1-axis

𝜅2𝜅2 − 𝜅1

𝜅2-axis

S

Figure 1: Characters in Knum (Ku(𝑌 5)) under the hexagonal coordinate.
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Moduli spaces on K𝒖(𝒀 )

There are some well-known results on cubic 3-folds.
Theorem (BMMS 2009, Pertusi–Yang 2020, Feyzbakhsh–Pertusi 2023)

Let 𝑌 be a smooth cubic 3-fold. Then there are isomorphisms of moduli spaces

𝑀𝜎 ′ (Ku(𝑌 ), 𝜅1) � 𝑀𝜎 ′ (Ku(𝑌 ), 𝜅2) � 𝑀𝜎 ′ (Ku(𝑌 ), 𝜅2 − 𝜅1) � F1 (𝑌 ),

where𝑀𝜎 ′ (Ku(𝑌 ), 𝜅1) is the moduli space of 𝜎 ′-stable objects in Ku(𝑌 ) with
character 𝜅1, and F1 (𝑌 ) is the Fano surface of lines in 𝑌 .

Theorem (Categorical Torelli theorem for cubic 3-folds)

Let 𝑌,𝑌 ′ be two cubic 3-folds. Then 𝑌 � 𝑌 ′ ⇐⇒ Ku(𝑌 ) ≃ Ku(𝑌 ′)

Idea: Ku(𝑌 ) ≃ Ku(𝑌 ′) =⇒ 𝑀𝜎 (Ku(𝑌 ), [ℐℓ ]) � 𝑀𝜎 ′ (Ku(𝑌 ′), [ℐℓ ′ ])
=⇒ F1 (𝑌 ) � F1 (𝑌 ′)
=⇒ 𝑌 � 𝑌 ′ (geometric Torelli).
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Moduli spaces on K𝒖(𝒀 )

Cubic 4-folds are more interesting from their connection with K3 surfaces and
hyper-Kähler manifolds.

Theorem (Bayer–Lahoz–Macrı̀–Nuer–Perry–Stellari, 2021)

Let 𝑌 be a cubic 4-fold. For a character 𝑣 in the Mukai–Hodge lattice
H̃(Ku(𝑌 ),Z) and a stability condition 𝜎 ∈ Stab† (Ku(𝑌 )), the moduli space
𝑀𝜎 (Ku(𝑌 ), 𝑣) is a smooth projective hyper-Kähler manifold of K3[𝑛]-type with
dimension equal to 2 − 𝜒 (𝑣, 𝑣).

Theorem (Categorical Torelli theorem for cubic 4-folds)
(BLMS 2017, Li–Pertusi–Zhao 2020)

Let 𝑌,𝑌 ′ be two cubic 4-folds. Then 𝑌 � 𝑌 ′ iff there is an equivalence
Ku(𝑌 ) → Ku(𝑌 ′) whose induced map H̃(Ku(𝑌 ),Z) → H̃(Ku(𝑌 ′),Z)
commutes with the degree shift functor L𝒪 (− ⊗ 𝒪(1)).
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Thank you for your attention!
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