

Derived Obsessed Graduate Students

Stability conditions on Kuznetsov components via quadric fibrations

Peize Liu

University of Warwick

24 June 2025

Stability conditions have been proved to exist on D^b of varieties...

- Varieties whose derived category admits a full exceptional collection: projective spaces \mathbb{P}^n , quadrics $Q^n \subseteq \mathbb{P}^{n+1}$, Grassmannians Gr(k, n).
- Curves (= slope stability);
- Surfaces (tilt stability);
- Fano threefolds;
- Abelian threefolds;
- Quintic threefolds, and some other complete intersection CY_3 in \mathbb{P}^n .

Kuznetsov components

Let $Y \subseteq \mathbb{P}^{n+1}$ be a smooth cubic *n*-fold over \mathbb{C} . The derived category $D^{b}(Y)$ admits the semi-orthogonal decomposition

$$\mathsf{D}^{\mathsf{b}}(Y) = \langle \mathcal{K}u(Y), \mathcal{O}_Y, \mathcal{O}_Y(1), ..., \mathcal{O}_Y(n-2) \rangle, \tag{1}$$

where the full subcategory

 $\mathcal{K}u(Y) = \{ E \in D^{b}(Y) \mid \forall i \in \{0, 1, ..., n-2\}, Ext^{\bullet}(\mathcal{O}_{Y}(i), E) = 0 \}$

is called the **Kuznetsov component** of *Y*.

Kuznetsov components

Let $Y \subseteq \mathbb{P}^{n+1}$ be a smooth cubic *n*-fold over \mathbb{C} . The derived category $D^{b}(Y)$ admits the semi-orthogonal decomposition

$$\mathsf{D}^{\mathsf{b}}(Y) = \langle \mathcal{K}u(Y), \mathcal{O}_Y, \mathcal{O}_Y(1), ..., \mathcal{O}_Y(n-2) \rangle, \tag{1}$$

where the full subcategory

 $\mathcal{K}u(Y) = \left\{ E \in \mathsf{D}^{\mathsf{b}}(Y) \mid \forall i \in \{0, 1, ..., n-2\}, \operatorname{Ext}^{\bullet}(\mathcal{O}_{Y}(i), E) = 0 \right\}$

is called the **Kuznetsov component** of *Y*.

Known results

For a smooth cubic *n*-fold *Y*, there exists a Bridgeland stability condition on $\mathcal{K}u(Y)$:

- *n* = 3: Bernardara–Macrì–Mehrotra–Stellari, 2012;
- *n* = 4: Bayer–Lahoz–Macrì–Stellari, 2017;
- *n* = 5: *ongoing project*.

The current method cannot be generalised to $n \ge 6$!

- Find a linear subspace $\mathbb{P}^k \subseteq Y$ and construct a quadric fibration $\operatorname{Bl}_{\mathbb{P}^k} Y \to \mathbb{P}^{n-k}$.
- Construct a fully faithful functor $\mathcal{K}u(Y) \hookrightarrow \mathsf{D}^{\mathsf{b}}(\mathbb{P}^{n-k}, \mathcal{C}_0)$ to a "twisted" derived category of \mathbb{P}^{n-k} .
- Construct a weak stability condition on $D^{b}(\mathbb{P}^{n-k}, \mathscr{C}_{0})$.
- Restrict the weak stability condition on *Ku*(*Y*), which becomes a stability condition. →

Geometry of quadric fibrations

• Let *V* bs a (n + 2)-dim vector space, $A \subseteq V$ a (k + 1)-dim subspace, and B := V/A the (n - k + 1)-dim quotient space.

- Let *V* bs a (n + 2)-dim vector space, $A \subseteq V$ a (k + 1)-dim subspace, and B := V/A the (n k + 1)-dim quotient space.
- Blowing up P(V) along the k-plane Π = P(A) ⊆ Y. Let E' be the exceptional divisor. Let H' := τ^{*} O_{P(V)}(1) and h' := q^{*} O_{P(B)}(1).

- Let *V* bs a (n + 2)-dim vector space, $A \subseteq V$ a (k + 1)-dim subspace, and B := V/A the (n k + 1)-dim quotient space.
- Blowing up P(V) along the k-plane Π = P(A) ⊆ Y. Let E' be the exceptional divisor. Let H' := τ*𝒪_{P(V)}(1) and h' := q*𝒪_{P(B)}(1).
- $q: \operatorname{Bl}_{\Pi} \mathbb{P}(V) \to \mathbb{P}(B)$ is a \mathbb{P}^{k+1} -fibration. $\operatorname{Bl}_{\Pi} \mathbb{P}(V) = \mathbb{P}_{\mathbb{P}(B)}(\mathcal{F})$, where

$$\mathcal{F} := \left(q_* \tau^* \mathcal{O}_{\mathbb{P}(V)}(1) \right)^{\check{}} \cong \mathcal{O}_{\mathbb{P}(B)}^{\oplus (k+1)} \oplus \mathcal{O}_{\mathbb{P}(B)}(-1)$$

is locally free of rank (k + 2).

- Let *V* bs a (n + 2)-dim vector space, $A \subseteq V$ a (k + 1)-dim subspace, and B := V/A the (n k + 1)-dim quotient space.
- Blowing up P(V) along the k-plane Π = P(A) ⊆ Y. Let E' be the exceptional divisor. Let H' := τ*𝒪_{P(V)}(1) and h' := q*𝒪_{P(B)}(1).
- $q: \operatorname{Bl}_{\Pi} \mathbb{P}(V) \to \mathbb{P}(B)$ is a \mathbb{P}^{k+1} -fibration. $\operatorname{Bl}_{\Pi} \mathbb{P}(V) = \mathbb{P}_{\mathbb{P}(B)}(\mathcal{F})$, where

$$\mathcal{F} := \left(q_* \tau^* \mathcal{O}_{\mathbb{P}(V)}(1) \right)^{\check{}} \cong \mathcal{O}_{\mathbb{P}(B)}^{\oplus (k+1)} \oplus \mathcal{O}_{\mathbb{P}(B)}(-1)$$

is locally free of rank (k + 2).

• Let $Y \subseteq \mathbb{P}(V)$ is a smooth cubic *n*-fold with $\Pi \subseteq Y$. Consider the embedded blow-up. Note that H' - E' = h' and $3H' - E' = \widetilde{Y}$ in Pic $\mathbb{P}(\mathcal{F})$.

- Let *V* bs a (n + 2)-dim vector space, $A \subseteq V$ a (k + 1)-dim subspace, and B := V/A the (n k + 1)-dim quotient space.
- Blowing up P(V) along the k-plane Π = P(A) ⊆ Y. Let E' be the exceptional divisor. Let H' := τ*𝒪_{P(V)}(1) and h' := q*𝒪_{P(B)}(1).
- $q: \operatorname{Bl}_{\Pi} \mathbb{P}(V) \to \mathbb{P}(B)$ is a \mathbb{P}^{k+1} -fibration. $\operatorname{Bl}_{\Pi} \mathbb{P}(V) = \mathbb{P}_{\mathbb{P}(B)}(\mathcal{F})$, where

$$\mathcal{F} := \left(q_* \tau^* \mathcal{O}_{\mathbb{P}(V)}(1) \right)^{\check{}} \cong \mathcal{O}_{\mathbb{P}(B)}^{\oplus (k+1)} \oplus \mathcal{O}_{\mathbb{P}(B)}(-1)$$

is locally free of rank (k + 2).

- Let $Y \subseteq \mathbb{P}(V)$ is a smooth cubic *n*-fold with $\Pi \subseteq Y$. Consider the embedded blow-up. Note that H' E' = h' and $3H' E' = \widetilde{Y}$ in Pic $\mathbb{P}(\mathcal{F})$.
- $q_* \mathcal{O}_{\mathbb{P}(\mathcal{F})}(\widetilde{Y}) = q_* \mathcal{O}_{\mathbb{P}(\mathcal{F})}(2H' + h') \cong \operatorname{Sym}^2 \mathcal{F}^{\check{}} \otimes \mathcal{O}_{\mathbb{P}(B)}(1).$ Hence \widetilde{Y} is defined by a section of $\operatorname{Sym}^2 \mathcal{F}^{\check{}} \otimes \mathcal{O}_{\mathbb{P}(B)}(1)$, or a quadratic form $Q: \mathcal{F} \longrightarrow \mathcal{F}^{\check{}} \otimes \mathcal{O}_{\mathbb{P}(B)}(1).$

 $\pi = q \circ \alpha : \widetilde{Y} \to \mathbb{P}(B)$ is a fibration in *k*-dimensional quadrics. Back

Clifford sheaves (Kuznetsov, 2008)

Quadratic form $Q \xrightarrow{}$ sheaf of Clifford algebras on $\mathbb{P}(B)$. Even & odd parts:

$$\mathscr{C}_0 := \bigoplus_{m=0}^{\infty} \wedge^{2m} \mathcal{F} \otimes \mathscr{O}_{\mathbb{P}(B)}(m), \qquad \mathscr{C}_1 := \bigoplus_{m=0}^{\infty} \wedge^{2m+1} \mathcal{F} \otimes \mathscr{O}_{\mathbb{P}(B)}(m).$$

Set $\mathscr{C}_{2j} := \mathscr{C}_0 \otimes \mathscr{O}_{\mathbb{P}(B)}(j)$ and $\mathscr{C}_{2j+1} := \mathscr{C}_1 \otimes \mathscr{O}_{\mathbb{P}(B)}(j)$ for any $j \in \mathbb{Z}$. \mathscr{C}_j are flat right \mathscr{C}_0 -modules. *Think of them as "line bundles" on* $(\mathbb{P}(B), \mathscr{C}_0)$, *as* $\mathscr{C}_j \otimes_{\mathscr{C}_0} \mathscr{C}_k \cong \mathscr{C}_{j+k}$.

Clifford sheaves (Kuznetsov, 2008)

Quadratic form $Q \xrightarrow{}$ sheaf of Clifford algebras on $\mathbb{P}(B)$. Even & odd parts:

$$\mathscr{C}_0 := \bigoplus_{m=0}^{\infty} \wedge^{2m} \mathcal{F} \otimes \mathscr{O}_{\mathbb{P}(B)}(m), \qquad \mathscr{C}_1 := \bigoplus_{m=0}^{\infty} \wedge^{2m+1} \mathcal{F} \otimes \mathscr{O}_{\mathbb{P}(B)}(m).$$

Set $\mathscr{C}_{2j} := \mathscr{C}_0 \otimes \mathscr{O}_{\mathbb{P}(B)}(j)$ and $\mathscr{C}_{2j+1} := \mathscr{C}_1 \otimes \mathscr{O}_{\mathbb{P}(B)}(j)$ for any $j \in \mathbb{Z}$. \mathscr{C}_j are flat right \mathscr{C}_0 -modules. *Think of them as "line bundles" on* $(\mathbb{P}(B), \mathscr{C}_0)$, *as* $\mathscr{C}_j \otimes_{\mathscr{C}_0} \mathscr{C}_k \cong \mathscr{C}_{j+k}$.

Denote by

- $\operatorname{Coh}(\mathbb{P}(B), \mathcal{C}_0)$ the Abelian category of coherent right \mathcal{C}_0 -modules;
- $D^{b}(\mathbb{P}(B), \mathcal{C}_{0})$ the derived category of coherent right \mathcal{C}_{0} -modules.

The forgetful functor $Forg : D^b(\mathbb{P}(B), \mathcal{C}_0) \to D^b(\mathbb{P}(B))$ admits both left and right adjoints:

$$(-\otimes_{\mathscr{O}_{\mathbb{P}(B)}} \mathscr{C}_0) \dashv \operatorname{Forg} \dashv (-\otimes_{\mathscr{O}_{\mathbb{P}(B)}} \mathscr{C}_0).$$
(2)

The Serre functor of the category $D^{b}(\mathbb{P}(B), \mathcal{C}_{0})$:

$$\mathsf{S}(E) = \omega_{\mathbb{P}(B)} \otimes_{\mathscr{O}} E \otimes_{\mathscr{C}_0} \mathscr{C}_0[n-k].$$

Semi-orthogonal decompositions and mutations of $D^b(\widetilde{Y})$

Semi-orthogonal decompositions on $D^b(\widetilde{Y})$

• The derived pull-back $\sigma^* : D^b(Y) \to D^b(\widetilde{Y})$ is fully faithful. Orlov's formula gives the SOD of $D^b(\widetilde{Y})$:

$$\begin{split} \left\langle \sigma^* \mathsf{D}^{\mathsf{b}}(Y), \ \iota_* p^* \mathsf{D}^{\mathsf{b}}(\Pi), \ \iota_* (p^* \mathsf{D}^{\mathsf{b}}(\Pi) \otimes \mathcal{O}_E(-E)), \ \ldots, \ \iota_* (p^* \mathsf{D}^{\mathsf{b}}(\Pi) \otimes \mathcal{O}_E(-(n-k-2)E)) \right\rangle \\ &= \left\langle \sigma^* \, \mathcal{K} u(Y), \ \mathcal{O}, \ \ldots, \ \mathcal{O}((n-2)H), \ \iota_* \mathcal{O}_E, \ \ldots, \ \iota_* \mathcal{O}_E(kH), \ \ldots, \\ & \iota_* \mathcal{O}_E(-(n-k-2)E), \ \ldots, \ \iota_* \mathcal{O}_E(kH-(n-k-2)E) \right\rangle. \end{split}$$

Semi-orthogonal decompositions on $D^b(\widetilde{Y})$

• The derived pull-back $\sigma^* : D^b(Y) \to D^b(\widetilde{Y})$ is fully faithful. Orlov's formula gives the SOD of $D^b(\widetilde{Y})$:

$$\begin{split} \left\langle \sigma^* \mathsf{D}^{\mathsf{b}}(Y), \ \iota_* p^* \mathsf{D}^{\mathsf{b}}(\Pi), \ \iota_* (p^* \mathsf{D}^{\mathsf{b}}(\Pi) \otimes \mathcal{O}_E(-E)), \ \ldots, \ \iota_* (p^* \mathsf{D}^{\mathsf{b}}(\Pi) \otimes \mathcal{O}_E(-(n-k-2)E)) \right\rangle \\ &= \left\langle \sigma^* \, \mathcal{K} u(Y), \ \mathcal{O}, \ \ldots, \ \mathcal{O}((n-2)H), \ \iota_* \mathcal{O}_E, \ \ldots, \ \iota_* \mathcal{O}_E(kH), \ \ldots, \\ & \iota_* \mathcal{O}_E(-(n-k-2)E), \ \ldots, \ \iota_* \mathcal{O}_E(kH-(n-k-2)E) \right\rangle. \end{split}$$

• Fully faithful functor Φ : $D^{b}(\mathbb{P}(B), \mathcal{C}_{0}) \to D^{b}(\widetilde{Y}),$ $\Phi(F) = \pi^{*}F \otimes_{\pi^{*}\mathcal{C}_{0}} \mathcal{E}',$ where \mathcal{E}' is a $\pi^{*}\mathcal{C}_{0}$ -module that fits into the SES: $0 \longrightarrow q^{*}\mathcal{C}_{0}(-2H) \longrightarrow q^{*}\mathcal{C}_{1}(-H) \longrightarrow \alpha_{*}\mathcal{E}' \longrightarrow 0$

There is an SOD of $D^{b}(\widetilde{Y})$ [*Kuznetsov, 2008*]:

$$\begin{split} &\left\langle \Phi \mathsf{D}^{\mathsf{b}}(\mathbb{P}(B), \mathcal{C}_{0}), \ \pi^{*} \mathsf{D}^{\mathsf{b}}(\mathbb{P}(B)), \ \pi^{*} \mathsf{D}^{\mathsf{b}}(\mathbb{P}(B)) \otimes \mathcal{O}(H), \ ..., \ \pi^{*} \mathsf{D}^{\mathsf{b}}(\mathbb{P}(B)) \otimes \mathcal{O}((k-1)H) \right\rangle \\ &= \left\langle \Phi \mathsf{D}^{\mathsf{b}}(\mathbb{P}(B), \mathcal{C}_{0}), \ \mathcal{O}, \ ..., \ \mathcal{O}((n-k)h), \ ..., \mathcal{O}((k-1)H), \ ..., \ \mathcal{O}((k-1)H + (n-k)h) \right\rangle. \end{split}$$

Comparing the two SODs, for small (n, k) it is possible to use a sequence of mutations to transform one into another:

• (n,k) = (3,1): the blow-up along a line in a cubic 3-fold induces a conic fibration. $D^{b}(\mathbb{P}^{2}, \mathcal{B}_{0}) \simeq \langle Ku(Y^{3}), \mathcal{B}_{1} \rangle$. [*BMMS, 2012*].

Comparing the two SODs, for small (n, k) it is possible to use a sequence of mutations to transform one into another:

- (n, k) = (3, 1): the blow-up along a line in a cubic 3-fold induces a conic fibration. $D^{b}(\mathbb{P}^{2}, \mathcal{B}_{0}) \simeq \langle Ku(Y^{3}), \mathcal{B}_{1} \rangle$. [*BMMS*, 2012].
- (n,k) = (4,1): the blow-up along a line in a cubic 4-fold induces a conic fibration. $D^{b}(\mathbb{P}^{3}, \mathcal{B}_{0}) \simeq \langle Ku(Y^{4}), \mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3} \rangle$. [*BLMS*, 2017].

Comparing the two SODs, for small (n, k) it is possible to use a sequence of mutations to transform one into another:

- (n,k) = (3,1): the blow-up along a line in a cubic 3-fold induces a conic fibration. $D^{b}(\mathbb{P}^{2}, \mathcal{B}_{0}) \simeq \langle Ku(Y^{3}), \mathcal{B}_{1} \rangle$. [*BMMS, 2012*].
- (n, k) = (4, 1): the blow-up along a line in a cubic 4-fold induces a conic fibration. $D^{b}(\mathbb{P}^{3}, \mathcal{B}_{0}) \simeq \langle Ku(Y^{4}), \mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3} \rangle$. [*BLMS*, 2017].
- (*n*, *k*) = (4, 2): the blow-up along the plane in a special cubic 4-fold containing that plane:

$$D^{b}(S, \alpha) \simeq D^{b}(\mathbb{P}^{2}, \mathcal{C}_{0}) \simeq \mathcal{K}u(Y^{4}).$$
 [Kuznetsov, 2009]

 $\mathcal{K}u(Y^4)$ is considered as a non-commutative K3 surface. Kuznetsov's rationality conjecture: a smooth cubic 4-fold Y^4 is rational iff $\mathcal{K}u(Y^4) \simeq \mathsf{D}^{\mathrm{b}}(S)$ for some K3 surface *S*.

Comparing the two SODs, for small (n, k) it is possible to use a sequence of mutations to transform one into another:

- (n,k) = (3,1): the blow-up along a line in a cubic 3-fold induces a conic fibration. $D^{b}(\mathbb{P}^{2}, \mathcal{B}_{0}) \simeq \langle Ku(Y^{3}), \mathcal{B}_{1} \rangle$. [*BMMS, 2012*].
- (n, k) = (4, 1): the blow-up along a line in a cubic 4-fold induces a conic fibration. $D^{b}(\mathbb{P}^{3}, \mathcal{B}_{0}) \simeq \langle Ku(Y^{4}), \mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3} \rangle$. [*BLMS, 2017*].
- (n, k) = (4, 2): the blow-up along the plane in a special cubic 4-fold containing that plane:

$$D^{b}(S, \alpha) \simeq D^{b}(\mathbb{P}^{2}, \mathcal{C}_{0}) \simeq \mathcal{K}u(Y^{4}).$$
 [Kuznetsov, 2009]

 $\mathcal{K}u(Y^4)$ is considered as a non-commutative K3 surface. Kuznetsov's rationality conjecture: a smooth cubic 4-fold Y^4 is rational iff $\mathcal{K}u(Y^4) \simeq \mathsf{D}^{\mathrm{b}}(S)$ for some K3 surface *S*.

• (n,k) = (5,2): the blow-up along a plane in a cubic 5-fold induces a quadric surface fibration. $D^{b}(\mathbb{P}^{3}, \mathcal{C}_{0}) \simeq \langle \mathcal{K}u(Y^{5}), \mathcal{C}_{1}, \mathcal{C}_{2} \rangle$. (*new result*)

Back

Mutations on a cubic 5-fold takes 14 steps!

 $D^{b}(\widetilde{Y})$

 $=\langle \mathscr{O}(-H), \ \sigma^* \mathcal{K} u(Y), \ \mathscr{O}, \ \mathscr{O}(H), \ \mathscr{O}(2H), \ \iota_* \mathscr{O}_E(H), \ \iota_* \mathscr{O}_E(2H), \ \iota_* \mathscr{O}_E(H-E), \ \iota_* \mathscr{O}_E(2H-E), \ \iota_* \mathscr{O}_E(3H-E) \rangle$

 $=\langle \mathscr{O}(-H), \ \sigma^* \mathcal{K}u(Y), \ \mathscr{O}, \ \iota_* \mathscr{O}_E, \ \mathscr{O}(H), \ \mathscr{O}(2H), \ \iota_* \mathscr{O}_E(H), \ \iota_* \mathscr{O}_E(2H), \ \iota_* \mathscr{O}_E(H-E), \ \iota_* \mathscr{O}_E(2H-E), \ \iota_* \mathscr{O}_E(3H-E) \rangle$

(Left mutation of $\iota_* \mathcal{O}_E$ through $\langle \mathcal{O}(H), \mathcal{O}(2H) \rangle$, using Lemma 2.5.(i))

 $= \langle \mathcal{O}(-H), \ \sigma^* \mathcal{K}u(Y), \ \mathcal{O}, \ \iota_* \mathcal{O}_E, \ \mathcal{O}(H), \ \iota_* \mathcal{O}_E(H), \ \mathcal{O}_*(2H), \ \iota_* \mathcal{O}_E(2H), \ \iota_* \mathcal{O}_E(2H-E), \ \iota_* \mathcal{O}_E(3H-E) \rangle$ $(Left mutation of \iota_* \mathcal{O}_E(H) through \ \mathcal{O}(2H), using Lemma 2.5.(i))$

 $= \langle \mathcal{O}(-H), \sigma^* \mathcal{K}u(Y), \mathcal{O}(-H+h), \mathcal{O}, \mathcal{O}(h), \mathcal{O}(H), \mathcal{O}(H+h), \mathcal{O}(2H), \iota_s \mathcal{O}_E(H-E), \iota_s \mathcal{O}_E(2H-E), \iota_s \mathcal{O}_E(3H-E) \rangle$ (Left mutation of $\iota_s \mathcal{O}_E(aH)$ through $\mathcal{O}(aH)$ for a = 0, 1, 2, using Lemma 2.5,(iii)

 $= \left\langle \mathscr{O}(-H), \ \mathscr{O}(-H+h), \ \mathsf{R}_{\mathscr{O}(-H+h)} \sigma^* \mathcal{K}u(Y), \ \mathscr{O}, \ \mathscr{O}(h), \ \mathscr{O}(H), \ \mathscr{O}(H+h), \ \mathscr{O}(2H), \ \iota_* \mathscr{O}_E(H-E), \ \iota_* \mathscr{O}_E(2H-E), \ \iota_* \mathscr{O}_E(3H-E) \right\rangle$

 $= \left\langle \mathbb{R}_{\mathcal{O}(-H+h)} \sigma^* \mathcal{K} u(Y), \ \mathcal{O}, \ \mathcal{O}(h), \ \mathcal{O}(H), \ \mathcal{O}(H+h), \ \mathcal{O}(2H), \ \iota_* \mathcal{O}_E(H-E), \ \iota_* \mathcal{O}_E(2H-E), \ \iota_* \mathcal{O}_E(3H-E), \ \mathcal{O}(H+2h), \ \mathcal{O}(H+3h) \right\rangle$

(Right mutation of $\langle \mathcal{O}(-H), \mathcal{O}(-H+h) \rangle$ through its left orthogonal, using the Serre functor $S = (- \otimes \mathcal{O}(-2H - 2h))[5]$)

 $= \left\langle \mathbf{R}_{\mathcal{O}(-H+h)} \sigma^* \mathcal{K}u(Y), \ \mathcal{O}, \ \mathcal{O}(h), \ \mathcal{O}(H), \ \mathcal{O}(H+h), \ \mathcal{O}(2H), \ \iota_* \mathcal{O}_E(h), \ \iota_* \mathcal{O}_E(H+h), \ \iota_* \mathcal{O}_E(2H+h), \ \mathcal{O}(H+2h), \ \mathcal{O}(H+3h) \right\rangle$

(E = H - h)

 $= \left\langle \mathbf{R}_{\mathcal{O}(-H + h)} \sigma^* \mathcal{K}u(Y), \ \mathcal{O}, \ \mathcal{O}(h), \ \mathcal{O}(H), \ \mathcal{O}(H + h), \ \mathcal{O}(2H), \ \iota_* \mathcal{O}_E(h), \ \iota_* \mathcal{O}_E(H + h), \ \mathcal{O}(H + 2h), \ \mathcal{O}(2H + h), \ \mathcal{O}(H + 3h) \right\rangle$

(Right mutation of $\iota_* \mathcal{O}_E(2H + h)$ through $\mathcal{O}(H + 2h)$, using Lemma 2.5.(iii))

 $= \left\langle \mathbf{R}_{\mathcal{O}(-H+h)} \sigma^* \mathcal{K}u(Y), \ \mathcal{O}, \ \mathcal{O}(h), \ \mathcal{O}(H), \ \mathcal{O}(H+h), \ \mathbf{L}_{\mathcal{O}(2H)} \iota_* \mathcal{O}_E(h), \ \mathbf{L}_{\mathcal{O}(2H)} \iota_* \mathcal{O}_E(H+h), \ \mathcal{O}(2H+h), \ \mathcal{O}(2H+h), \ \mathcal{O}(H+3h) \right\rangle$

 $= \left\langle \mathbf{R}_{\mathcal{O}(-H+h)} \sigma^* \mathcal{K}u(Y), \ \mathcal{O}, \ \mathcal{O}(h), \ \mathcal{O}(H), \ \mathcal{O}(H+h), \ \mathbf{L}_{\mathcal{O}(2H)} \iota_* \mathcal{O}_E(h), \ \mathbf{L}_{\mathcal{O}(2H)} \iota_* \mathcal{O}_E(H+h), \ \mathcal{O}(H+2h), \ \mathcal{O}(2H), \ \mathcal{O}(H+3h), \ \mathcal{O}(2H+h) \right\rangle$

(Left mutation of O(H + 2h) through O(2H) and O(H + 3h) through O(2H + h), using Lemma 2.5.(iv))

 $= \left\langle \mathbf{R}_{\mathcal{O}(-H+h)} \sigma^* \mathcal{K}u(Y), \ \mathcal{O}, \ \mathcal{O}(h), \ \mathcal{O}(H), \ \mathcal{O}(H+h), \ \mathbf{L}_{\mathcal{O}(2H)} \iota_* \mathcal{O}_E(h), \ \mathbf{L}_{\mathcal{O}(2H)} \iota_* \mathcal{O}_E(H+h), \ \mathcal{O}(H+2h), \ \mathcal{O}(H+3h), \ \mathcal{O}(2H), \ \mathcal{O}(2H+h) \right\rangle$ (Left mutation of $\mathcal{O}(H+3h)$ through $\mathcal{O}(2H)$, using Lemma 2.5.(iv))

 $= \left\langle \mathcal{O}(-2h), \ \mathcal{O}(-h), \ \mathsf{R}_{\mathcal{O}(-H+h)}\sigma^* \mathcal{K}u(Y), \ \mathcal{O}, \ \mathcal{O}(h), \ \mathcal{O}(H), \ \mathcal{O}(H+h), \ \mathsf{L}_{\mathcal{O}(2H)}\iota_*\mathcal{O}_E(h), \ \mathsf{L}_{\mathcal{O}(2H)}\iota_*\mathcal{O}_E(H+h), \ \mathcal{O}(H+2h), \ \mathcal{O}(H+3h) \right\rangle$ (Left mutation of $\langle \mathcal{O}(2H, h) \rangle$ through its right orthogonal, using the Serre functor)

 $= \left\langle \mathbf{L}_{\mathcal{O}(-2h)} \mathbf{L}_{\mathcal{O}(-h)} \mathbf{R}_{\mathcal{O}(-H+h)} \sigma^* \mathcal{K}_{\mathcal{U}}(Y), \quad \mathcal{O}(-2h), \quad \mathcal{O}(-h), \quad \mathcal{O}, \quad \mathcal{O}(h), \quad \mathcal{O}(H+h), \quad \mathbf{L}_{\mathcal{O}(2H)} \iota_* \mathcal{O}_{\mathcal{E}}(h), \quad \mathbf{L}_{\mathcal{O}(2H)} \iota_* \mathcal{O}_{\mathcal{E}}(H+h), \quad \mathcal{O}(H+2h), \quad \mathcal{O}(H+3h) \right\rangle$

 $=\langle \mathcal{K}, \mathcal{O}(-2h), \mathcal{O}(-h), \mathcal{O}, \mathcal{O}(h), \mathcal{O}(H), \mathcal{O}(H+h), \mathcal{O}(H+2h), \mathcal{O}(H+3h) \rangle$

 $(\text{Left mutation of } \left\langle \mathcal{L}_{\mathcal{O}(2H)} \iota_* \mathcal{O}_E(h), \ \mathcal{L}_{\mathcal{O}(2H)} \iota_* \mathcal{O}_E(H+h) \right\rangle \text{ through } \left\langle \mathcal{O}(-2h), \ \mathcal{O}(-h), \ \mathcal{O}, \ \mathcal{O}(h), \ \mathcal{O}(H), \ \mathcal{O}(H+h) \right\rangle)$

Mutations on a cubic 5-fold takes 14 steps!

Not knowing of a general method, we conjecture that the fibration $Bl_{\mathbb{P}^k} Y^n \to \mathbb{P}^{n-k}$ in *k*-dimensional quadrics induces the equivalence

$$\mathsf{D}^{\mathsf{b}}(\mathbb{P}^{n-k}, \mathscr{C}_0) \simeq \langle \mathcal{K}u(Y^n), \mathscr{C}_1, ..., \mathscr{C}_{2n-3k-2} \rangle$$

for all possible (n, k) with $k \leq n/2$.

Bridgeland stability conditions

Categorical set-up

- + $\mathcal D$ a $\mathbb C\text{-linear}$ triangulated category, and $K_0(\mathcal D)$ its Grothendieck group.
- Fix a finite-rank lattice Λ and a surjective group homomorphism $v: K_0(\mathcal{D}) \to \Lambda$.
- \mathcal{A} the heart of a bounded t-structure on \mathcal{D} .

Categorical set-up

- + ${\mathcal D}$ a ${\mathbb C}\text{-linear}$ triangulated category, and $K_0({\mathcal D})$ its Grothendieck group.
- Fix a finite-rank lattice Λ and a surjective group homomorphism $v: K_0(\mathcal{D}) \to \Lambda$.
- \mathcal{A} the heart of a bounded t-structure on \mathcal{D} .

Definition

A weak stability function is a group homomorphism $Z : \Lambda \to \mathbb{C}$ such that, for any $E \in \mathcal{A} \setminus \{0\}$,

$$Z(v(E)) \in \left\{ z = m \cdot e^{i\pi\phi} \mid m \ge 0, \ \phi \in (0,1] \right\} = \mathbb{H} \cup \mathbb{R}_{\le 0}.$$

 $\phi = \phi(E)$ is called the phase of *E*. If we require further that $Z(v(E)) \neq 0$ for $E \neq 0$, then *Z* is called a **stability function**.

An object $E \in \mathcal{A}$ is called **semi-stable** (*resp.* **stable**) with respect to (\mathcal{A}, Z) , if for any $F \hookrightarrow E$ with $F \not\cong E$ in \mathcal{A} , one has $\phi(F) \leq \phi(E/F)$ (*resp.* <).

Categorical set-up

- + $\mathcal D$ a $\mathbb C\text{-linear}$ triangulated category, and $K_0(\mathcal D)$ its Grothendieck group.
- Fix a finite-rank lattice Λ and a surjective group homomorphism $v : K_0(\mathcal{D}) \to \Lambda$.
- \mathcal{A} the heart of a bounded t-structure on \mathcal{D} .

Definition

A weak stability function is a group homomorphism $Z : \Lambda \to \mathbb{C}$ such that, for any $E \in \mathcal{A} \setminus \{0\}$,

$$Z(v(E)) \in \left\{ z = m \cdot e^{i\pi\phi} \mid m \ge 0, \ \phi \in (0,1] \right\} = \mathbb{H} \cup \mathbb{R}_{\le 0}.$$

 $\phi = \phi(E)$ is called the phase of *E*. If we require further that $Z(v(E)) \neq 0$ for $E \neq 0$, then *Z* is called a **stability function**.

An object $E \in \mathcal{A}$ is called **semi-stable** (*resp.* **stable**) with respect to (\mathcal{A}, Z) , if for any $F \hookrightarrow E$ with $F \ncong E$ in \mathcal{A} , one has $\phi(F) \le \phi(E/F)$ (*resp.* <). The slope of *E* with respect to *Z*:

$$\mu_Z(E) = -\cot(\pi\phi(E)) = \begin{cases} -\frac{\operatorname{Re}Z(v(E))}{\operatorname{Im}Z(v(E))}, & \operatorname{Im}Z(v(E)) > 0\\ +\infty, & \text{otherwise.} \end{cases}$$

Definition

A (weak) stability condition on \mathcal{D} with respect to Λ is a pair $\sigma = (\mathcal{A}, Z)$, where \mathcal{A} is the heart of a bounded t-structure on \mathcal{D} , and $Z_{\mathcal{A}} : \Lambda \to \mathbb{C}$ is a (weak) stability function satisfying:

(i) (Harder–Narasimhan property) For any $E \in A$, there exists a filtration

 $0 = E_0 \subsetneq E_1 \subsetneq \cdots \subsetneq E_\ell =: E$

by objects E_i in A, such that the graded factors E_i/E_{i-1} are semi-stable of phase ϕ_i , and

$$\phi^+(E) := \phi_1 > \cdots > \phi_\ell =: \phi^-(E).$$

(ii) (**Support property**) There exists a quadratic form Q on $\Lambda \otimes \mathbb{R}$ such that $Q|_{\ker Z}$ is negative definite, and $Q(E) \ge 0$ for semi-stable $E \in \mathcal{A}$.

The space of stability conditions $\text{Stab}(\mathcal{D})$ has the structure of a complex manifold of dimension equal to rk Λ , a celebrated result by Bridgeland.

Let *X* be an *n*-dimensional smooth projective variety, and $h \in \text{Pic } X$ an ample divisor class.

Example

The classical slope stability on $D^{b}(X)$ is $(Coh(X), Z_{\mu})$, where

$$Z_{\mu}(E) = -h^{n-1} \cdot \operatorname{ch}_{1}(E) + \mathrm{i}h^{n} \cdot \operatorname{ch}_{0}(E),$$

is a weak stability condition with respect to the lattice generated by (ch_0, ch_1) .

- The slope $\mu(E) = -\frac{\text{Re }Z(v(E))}{\text{Im }Z(v(E))} = \frac{\text{deg }E}{h^n \operatorname{rk }E}$ is directly proportional to the classical slope.
- The support property is satisfied by the trivial quadratic form Q = 0.

Tilting stability conditions

Given the heart of a bounded t-structure \mathcal{A} of \mathcal{D} and $\mu \in \mathbb{R}$, consider the full subcategories

$$\mathcal{T}^{\mu} = \left\{ E \in \mathcal{A} \mid \mu_{Z}^{-}(E) > \mu \right\}; \qquad \mathcal{F}^{\mu} \left\{ E \in \mathcal{A} \mid \mu_{Z}^{+}(E) \leq \mu \right\}.$$

Then $(\mathcal{T}^{\mu}, \mathcal{F}^{\mu})$ is a torsion pair. The tilt

$$\mathcal{A}^{\mu} := \langle \mathcal{T}^{\mu}, \mathcal{F}^{\mu}[1] \rangle$$

is a heart of bounded t-structure of \mathcal{D} . The objects $E \in \mathcal{A}^{\mu}$ has cohomology

$$\mathcal{H}^{i}(E) \begin{cases} \in \mathcal{T}, & i = 0; \\ \in \mathcal{F}, & i = -1; \\ = 0, & \text{otherwise.} \end{cases}$$

Let *X* be an *n*-dimensional smooth projective variety, and $h \in \text{Pic } X$ an ample divisor class.

Example

For $\beta \in \mathbb{R}$, we can tilt the heart $\operatorname{Coh}(X)$ at $\mu = \beta$ to get a new heart $\operatorname{Coh}^{\beta}(X)$. Then the (first) tilt stability $(\operatorname{Coh}^{\beta}(X), Z_{\alpha,\beta})$ where

$$Z_{\alpha,\beta}(E) := -h^{n-2} \cdot \left(ch_2^{\beta}(E) - \frac{1}{2} \alpha^2 ch_0^{\beta}(E) \right) + ih^{n-1} \cdot ch_1^{\beta}(E),$$

where $ch^{\beta}(E) := e^{-\beta h} \cdot ch(E)$, is a weak stability condition with respect to the lattice generated by (ch_0, ch_1, ch_2) .

The support property is given by the **Bogomolov's inequality**:

$$\Delta(E) := h^{n-2} \cdot (\mathrm{ch}_1(E)^2 - 2 \, \mathrm{ch}_0(E) \, \mathrm{ch}_2(E)) \ge 0,$$

which holds for μ -semistable torsion-free sheaves *E*.

Stability conditions on $\mathcal{K}u(Y)$

Weak tilt stability on $D^b(P^3, \mathscr{C}_0)$

Fix *Y* smooth cubic 5-fold, $\Pi \subseteq Y$ a 2-plane. The quadric surface fibration $Bl_{\Pi} Y \to \mathbb{P}^3$ induces:

 $\mathsf{D}^{\mathsf{b}}(\mathbb{P}^{3},\mathscr{C}_{0})\simeq \langle \mathcal{K}u(Y),\mathscr{C}_{1},\mathscr{C}_{2}\rangle; \quad \mathscr{C}_{0}=\mathscr{O}\oplus\mathscr{O}(-1)^{\oplus 3}\oplus\mathscr{O}(-2)^{\oplus 3}\oplus\mathscr{O}(-3).$

Weak tilt stability on $D^b(\mathbb{P}^3, \mathscr{C}_0)$

Fix *Y* smooth cubic 5-fold, $\Pi \subseteq Y$ a 2-plane. The quadric surface fibration $Bl_{\Pi} Y \to \mathbb{P}^3$ induces:

 $\mathsf{D}^{\mathsf{b}}(\mathbb{P}^{3},\mathscr{C}_{0})\simeq \langle \mathcal{K}u(Y),\mathscr{C}_{1},\mathscr{C}_{2}\rangle \,;\quad \mathscr{C}_{0}=\mathscr{O}\oplus\mathscr{O}(-1)^{\oplus 3}\oplus\mathscr{O}(-2)^{\oplus 3}\oplus\mathscr{O}(-3).$

• On $D^{b}(\mathbb{P}^{3}, \mathcal{C}_{0})$ we have the slope stability:

 $(\operatorname{Coh}(\mathbb{P}^3, \mathscr{C}_0), \ Z = -h^2 \operatorname{ch}_1 + \mathrm{i}h^3 \operatorname{ch}_0).$

Weak tilt stability on $D^b(\mathbb{P}^3, \mathscr{C}_0)$

Fix *Y* smooth cubic 5-fold, $\Pi \subseteq Y$ a 2-plane. The quadric surface fibration $Bl_{\Pi} Y \to \mathbb{P}^3$ induces:

 $\mathsf{D}^{\mathsf{b}}(\mathbb{P}^{3},\mathscr{C}_{0})\simeq \langle \mathcal{K}u(Y),\mathscr{C}_{1},\mathscr{C}_{2}\rangle\,;\quad \mathscr{C}_{0}=\mathscr{O}\oplus\mathscr{O}(-1)^{\oplus 3}\oplus\mathscr{O}(-2)^{\oplus 3}\oplus\mathscr{O}(-3).$

• On $D^b(\mathbb{P}^3, \mathcal{C}_0)$ we have the slope stability:

$$(\operatorname{Coh}(\mathbb{P}^3, \mathscr{C}_0), \ Z = -h^2 \operatorname{ch}_1 + \mathrm{i}h^3 \operatorname{ch}_0).$$

• Tilt it at $\mu = \beta$: consider the pair $\sigma_{\alpha,\beta} = (\operatorname{Coh}^{\beta}(\mathbb{P}^{3}, \mathcal{C}_{0}), Z_{\alpha,\beta})$ with

$$Z_{\alpha,\beta}(E) := -h\left(\mathrm{ch}_{\mathscr{C}_{0,2}}^{\beta}(E) - \frac{1}{2}\alpha^{2} \operatorname{ch}_{\mathscr{C}_{0,0}}^{\beta}(E)\right) + \mathrm{i}h^{2} \operatorname{ch}_{\mathscr{C}_{0,1}}^{\beta}(E).$$

Here $ch_{\mathscr{C}_0}^{\beta}$ is a **modified Chern character**, defined by

$$\mathrm{ch}_{\mathscr{C}_0}^{\beta}(E) := \mathrm{e}^{-\beta h} \left(1 - \frac{3}{8} h^2 \right) \mathrm{ch}(\mathrm{Forg}(E)).$$

Weak tilt stability on $D^b(P^3, \mathscr{C}_0)$

Fix *Y* smooth cubic 5-fold, $\Pi \subseteq Y$ a 2-plane. The quadric surface fibration $Bl_{\Pi} Y \to \mathbb{P}^3$ induces:

 $\mathsf{D}^{\mathsf{b}}(\mathbb{P}^{3},\mathscr{C}_{0})\simeq \langle \mathcal{K}u(Y),\mathscr{C}_{1},\mathscr{C}_{2}\rangle\,;\quad \mathscr{C}_{0}=\mathscr{O}\oplus\mathscr{O}(-1)^{\oplus 3}\oplus\mathscr{O}(-2)^{\oplus 3}\oplus\mathscr{O}(-3).$

• On $D^{b}(\mathbb{P}^{3}, \mathcal{C}_{0})$ we have the slope stability:

$$(\operatorname{Coh}(\mathbb{P}^3, \mathscr{C}_0), \ Z = -h^2 \operatorname{ch}_1 + \mathrm{i}h^3 \operatorname{ch}_0).$$

• Tilt it at $\mu = \beta$: consider the pair $\sigma_{\alpha,\beta} = (\operatorname{Coh}^{\beta}(\mathbb{P}^{3}, \mathcal{C}_{0}), Z_{\alpha,\beta})$ with

$$Z_{\alpha,\beta}(E) := -h\left(\mathrm{ch}_{\mathscr{C}_{0,2}}^{\beta}(E) - \frac{1}{2}\alpha^{2} \operatorname{ch}_{\mathscr{C}_{0,0}}^{\beta}(E)\right) + \mathrm{i}h^{2} \operatorname{ch}_{\mathscr{C}_{0,1}}^{\beta}(E).$$

Here $ch_{\mathscr{C}_0}^{\beta}$ is a **modified Chern character**, defined by

$$\operatorname{ch}_{\mathscr{C}_0}^{\beta}(E) := \mathrm{e}^{-\beta h} \left(1 - \frac{3}{8} h^2 \right) \operatorname{ch}(\operatorname{Forg}(E)).$$

• For support property, we need the modified Bogomolov inequality

$$\begin{split} \Delta_{\mathscr{C}_0}(E) &:= \operatorname{ch}_{\mathscr{C}_0,1}(E)^2 - 2\operatorname{ch}_{\mathscr{C}_0,0}(E)\operatorname{ch}_{\mathscr{C}_0,2}(E) \\ &= \operatorname{ch}_1(E)^2 - 2\operatorname{ch}_0(E)\operatorname{ch}_2(E) + \frac{3}{4}h^2\operatorname{ch}_0(E) \geqslant 0. \end{split}$$

Weak tilt stability on $D^b(P^3, \mathscr{C}_0)$

$$Z_{\alpha,\beta}(E) := -h^{n-2} \cdot \left(\operatorname{ch}_{2}^{\beta}(E) - \frac{1}{2} \alpha^{2} \operatorname{ch}_{0}^{\beta}(E) \right) + \mathrm{i}h^{n-1} \cdot \operatorname{ch}_{1}^{\beta}(E),$$
$$\operatorname{ch}_{\mathscr{C}_{0}}(E) := \left(1 - \frac{3}{8} h^{2} \right) \operatorname{ch}(\operatorname{Forg}(E)).$$

The number $-\frac{3}{8}$ is chosen such that $\Delta_{\mathscr{C}_0}(\mathscr{C}_j) = 0$ for all $j \in \mathbb{Z}$.

$$\Delta_{\mathscr{C}_0}(E) := \operatorname{ch}_{\mathscr{C}_0,1}(E)^2 - 2\operatorname{ch}_{\mathscr{C}_0,0}(E)\operatorname{ch}_{\mathscr{C}_0,2}(E)$$
$$= \operatorname{ch}_1(E)^2 - 2\operatorname{ch}_0(E)\operatorname{ch}_2(E) + \frac{3}{4}h^2\operatorname{ch}_0(E) \ge 0.$$

Weak tilt stability on $D^b(\mathbb{P}^3, \mathscr{C}_0)$

$$Z_{\alpha,\beta}(E) := -h^{n-2} \cdot \left(\operatorname{ch}_{2}^{\beta}(E) - \frac{1}{2} \alpha^{2} \operatorname{ch}_{0}^{\beta}(E) \right) + \mathrm{i}h^{n-1} \cdot \operatorname{ch}_{1}^{\beta}(E),$$
$$\operatorname{ch}_{\mathscr{C}_{0}}(E) := \left(1 - \frac{3}{8} h^{2} \right) \operatorname{ch}(\operatorname{Forg}(E)).$$

The number $-\frac{3}{8}$ is chosen such that $\Delta_{\mathscr{C}_0}(\mathscr{C}_j) = 0$ for all $j \in \mathbb{Z}$.

$$\Delta_{\mathscr{C}_0}(E) := \operatorname{ch}_{\mathscr{C}_0,1}(E)^2 - 2\operatorname{ch}_{\mathscr{C}_0,0}(E)\operatorname{ch}_{\mathscr{C}_0,2}(E)$$
$$= \operatorname{ch}_1(E)^2 - 2\operatorname{ch}_0(E)\operatorname{ch}_2(E) + \frac{3}{4}h^2\operatorname{ch}_0(E) \ge 0.$$

To prove $\Delta_{\mathscr{C}_0}(E) \ge 0$ for μ -semistable *E*:

 [BLMS] Use a Langer-type restriction theorem to restrict on D^b(ℙ², C₀) (the difficult part);

Weak tilt stability on $D^{b}(\mathbb{P}^{3}, \mathscr{C}_{0})$

$$Z_{\alpha,\beta}(E) := -h^{n-2} \cdot \left(\operatorname{ch}_{2}^{\beta}(E) - \frac{1}{2} \alpha^{2} \operatorname{ch}_{0}^{\beta}(E) \right) + \mathrm{i}h^{n-1} \cdot \operatorname{ch}_{1}^{\beta}(E),$$
$$\operatorname{ch}_{\mathscr{C}_{0}}(E) := \left(1 - \frac{3}{8}h^{2} \right) \operatorname{ch}(\operatorname{Forg}(E)).$$

The number $-\frac{3}{8}$ is chosen such that $\Delta_{\mathscr{C}_0}(\mathscr{C}_j) = 0$ for all $j \in \mathbb{Z}$.

$$\Delta_{\mathscr{C}_0}(E) := \operatorname{ch}_{\mathscr{C}_0,1}(E)^2 - 2\operatorname{ch}_{\mathscr{C}_0,0}(E)\operatorname{ch}_{\mathscr{C}_0,2}(E)$$
$$= \operatorname{ch}_1(E)^2 - 2\operatorname{ch}_0(E)\operatorname{ch}_2(E) + \frac{3}{4}h^2\operatorname{ch}_0(E) \ge 0$$

To prove $\Delta_{\mathscr{C}_0}(E) \ge 0$ for μ -semistable *E*:

- [*BLMS*] Use a Langer-type restriction theorem to restrict on D^b(ℙ², C₀) (*the difficult part*);
- Inequality follows from Hirzebruch–Riemann–Roch on \mathbb{P}^2 and the fact that every \mathscr{C}_0 -module has rank divisible by 8.

It is still a *weak* stability condition as all 0-dim sheaves lie in ker $Z_{\alpha,\beta}$.

Proposition ([BLMS, Proposition 5.1])

Let $\sigma = (\mathcal{A}, Z)$ be a weak stability condition on \mathcal{D} with a Serre functor S. Assume that $\mathcal{D} = \langle \mathcal{D}_1, E_1, ..., E_m \rangle$, where $E_i \in \mathcal{D}$ are exceptional objects. Then $\sigma_1 = (\mathcal{A} \cap \mathcal{D}_1, Z|_{\mathcal{D}_1})$ is a stability condition on \mathcal{D}_1 , if for i = 1, ..., m the following conditions are satisfied:

- (1) $E_i \in \mathcal{A};$
- (2) $S(E) \in \mathcal{A}[1];$
- (3) $Z(E_i) \neq 0;$
- (4) For non-zero object *F* in $A_1 := A \cap D_1, Z(F) \neq 0$;

Proposition ([BLMS, Proposition 5.1])

Let $\sigma = (\mathcal{A}, Z)$ be a weak stability condition on \mathcal{D} with a Serre functor S. Assume that $\mathcal{D} = \langle \mathcal{D}_1, E_1, ..., E_m \rangle$, where $E_i \in \mathcal{D}$ are exceptional objects. Then $\sigma_1 = (\mathcal{A} \cap \mathcal{D}_1, Z|_{\mathcal{D}_1})$ is a stability condition on \mathcal{D}_1 , if for i = 1, ..., m the following conditions are satisfied:

- (1) $E_i \in \mathcal{A};$
- (2) $S(E) \in \mathcal{A}[1];$
- (3) $Z(E_i) \neq 0;$
- (4) For non-zero object *F* in $A_1 := A \cap D_1, Z(F) \neq 0$;
 - Need to change the heart such that

 $\mathscr{C}_i[j] \in \mathcal{A}, \quad \mathsf{S}(\mathscr{C}_i[i]) = \mathscr{C}_{i-2}[j+3] \in \mathcal{A}[1], \quad i = 1, 2.$

Proposition ([BLMS, Proposition 5.1])

Let $\sigma = (\mathcal{A}, Z)$ be a weak stability condition on \mathcal{D} with a Serre functor S. Assume that $\mathcal{D} = \langle \mathcal{D}_1, E_1, ..., E_m \rangle$, where $E_i \in \mathcal{D}$ are exceptional objects. Then $\sigma_1 = (\mathcal{A} \cap \mathcal{D}_1, Z|_{\mathcal{D}_1})$ is a stability condition on \mathcal{D}_1 , if for i = 1, ..., m the following conditions are satisfied:

- (1) $E_i \in \mathcal{A};$
- (2) $S(E) \in \mathcal{A}[1];$
- (3) $Z(E_i) \neq 0;$
- (4) For non-zero object *F* in $A_1 := A \cap D_1, Z(F) \neq 0$;
 - Need to change the heart such that

 $\mathscr{C}_i[j] \in \mathcal{A}, \quad \mathsf{S}(\mathscr{C}_i[i]) = \mathscr{C}_{i-2}[j+3] \in \mathcal{A}[1], \quad i = 1, 2.$

• For suitable (α, β) , we have

 $v_{\alpha,\beta}(\mathcal{C}_{-1}[1]) < v_{\alpha,\beta}(\mathcal{C}_0[1]) < 0 < v_{\alpha,\beta}(\mathcal{C}_1) < v_{\alpha,\beta}(\mathcal{C}_2).$

Proposition ([BLMS, Proposition 5.1])

Let $\sigma = (\mathcal{A}, Z)$ be a weak stability condition on \mathcal{D} with a Serre functor S. Assume that $\mathcal{D} = \langle \mathcal{D}_1, E_1, ..., E_m \rangle$, where $E_i \in \mathcal{D}$ are exceptional objects. Then $\sigma_1 = (\mathcal{A} \cap \mathcal{D}_1, Z|_{\mathcal{D}_1})$ is a stability condition on \mathcal{D}_1 , if for i = 1, ..., m the following conditions are satisfied:

- (1) $E_i \in \mathcal{A};$
- (2) $S(E) \in \mathcal{A}[1];$
- (3) $Z(E_i) \neq 0;$
- (4) For non-zero object *F* in $A_1 := A \cap D_1, Z(F) \neq 0$;
 - Need to change the heart such that

$$\mathscr{C}_i[j] \in \mathcal{A}, \quad \mathsf{S}(\mathscr{C}_i[i]) = \mathscr{C}_{i-2}[j+3] \in \mathcal{A}[1], \quad i = 1, 2.$$

• For suitable (α, β) , we have

$$\nu_{\alpha,\beta}(\mathscr{C}_{-1}[1]) < \nu_{\alpha,\beta}(\mathscr{C}_{0}[1]) < 0 < \nu_{\alpha,\beta}(\mathscr{C}_{1}) < \nu_{\alpha,\beta}(\mathscr{C}_{2}).$$

• Tilt $\operatorname{Coh}^{\beta}(\mathbb{P}^{3}, \mathscr{C}_{0})$ at $\nu_{\alpha,\beta} = 0$: $\operatorname{Coh}^{0}_{\alpha,\beta}(\mathbb{P}^{3}, \mathscr{C}_{0}) = \langle \mathcal{T}^{0}_{\alpha,\beta}, \mathcal{F}^{0}_{\alpha,\beta}[1] \rangle$. $\sigma^{0}_{\alpha,\beta} = (\operatorname{Coh}^{0}_{\alpha,\beta}(\mathbb{P}^{3}, \mathscr{C}_{0}), Z^{0}_{\alpha,\beta} = -iZ_{\alpha,\beta})$ is a rotation of $\sigma_{\alpha,\beta}$ by $3\pi/2$.

Theorem

Let Y be a smooth cubic 5-fold. $\mathcal{K}u(Y)$ has a family of Bridgeland stability conditions

$$\sigma_{\alpha,\beta}' = \left(\mathsf{Coh}_{\alpha,\beta}^0(\mathbb{P}^3, \mathscr{C}_0) \cap \mathcal{K}u(Y), \, Z_{\alpha,\beta}^0|_{\mathcal{K}u(Y)} \right),\,$$

parametrised by $\left\{ (\alpha, \beta) \in \mathbb{R}^2 \mid -\frac{3}{2} < \beta < -1, \ 0 < \alpha < \min\left\{ \beta + \frac{3}{2}, -1 - \beta \right\} \right\}$.

It is a stability condition as $\ker Z^0_{\alpha,\beta}$ is generated by $\operatorname{Coh}_{\dim=0}(\mathbb{P}^3, \mathscr{C}_0)$ and $\operatorname{Coh}_{\dim=0}(\mathbb{P}^3, \mathscr{C}_0) \cap \mathcal{K}u(Y) = \{0\}.$

Theorem

Let Y be a smooth cubic 5-fold. $\mathcal{K}u(Y)$ has a family of Bridgeland stability conditions

$$\sigma_{\alpha,\beta}' = \left(\mathsf{Coh}_{\alpha,\beta}^0(\mathbb{P}^3, \mathscr{C}_0) \cap \mathcal{K}u(Y), \, Z_{\alpha,\beta}^0|_{\mathcal{K}u(Y)} \right),\,$$

parametrised by $\left\{ (\alpha, \beta) \in \mathbb{R}^2 \mid -\frac{3}{2} < \beta < -1, \ 0 < \alpha < \min\left\{ \beta + \frac{3}{2}, -1 - \beta \right\} \right\}.$

It is a stability condition as ker $Z^0_{\alpha,\beta}$ is generated by $Coh_{dim=0}(\mathbb{P}^3, \mathscr{C}_0)$ and $Coh_{dim=0}(\mathbb{P}^3, \mathscr{C}_0) \cap \mathcal{K}u(Y) = \{0\}.$ Further remarks:

 By Collins–Polishchuk gluing, D^b(Y) = ⟨Ku(Y), 𝒪_Y, ..., 𝒪_Y(3)⟩ has non-empty Stab(D^b(Y)).

• The $\sigma'_{\alpha,\beta}$ -(semi)stability of any $E \in \mathcal{K}u(Y)$ is independent of α, β , and the choice of the 2-plane $\Pi \subseteq Y$.

Classical and Bridgeland moduli spaces

The lattice of $K_{num}(\mathcal{K}u(Y))$

For a cubic *n*-fold Y^n , the Serre functor S of $\mathcal{K}u(Y^n)$ satisfies $S^3 \simeq [n+2]$.

- $\mathcal{K}u(Y^3)$ is a fractional $\frac{5}{3}$ -CY category.
- $\mathcal{K}u(Y^4)$ is a CY₂ category (= K3 category).
- $\mathcal{K}u(Y^5)$ is a fractional $\frac{7}{3}$ -CY category.

The stability condition σ' on $\mathcal{K}u(Y^n)$ is **Serre invariant**: $S \cdot \sigma' \subseteq \sigma' \cdot \widetilde{\operatorname{GL}}_2^+(\mathbb{R})$.

The lattice of $K_{num}(\mathcal{K}u(Y))$

For a cubic *n*-fold Y^n , the Serre functor S of $\mathcal{K}u(Y^n)$ satisfies $S^3 \simeq [n+2]$.

- $\mathcal{K}u(Y^3)$ is a fractional $\frac{5}{3}$ -CY category.
- $\mathcal{K}u(Y^4)$ is a CY₂ category (= K3 category).
- $\mathcal{K}u(Y^5)$ is a fractional $\frac{7}{3}$ -CY category.

The stability condition σ' on $\mathcal{K}u(Y^n)$ is **Serre invariant**: $S \cdot \sigma' \subseteq \sigma' \cdot \widetilde{\operatorname{GL}}_2^+(\mathbb{R})$. For smooth cubic 3-folds, 5-folds and general cubic 4-folds, $\operatorname{K}_{\operatorname{num}}(\mathcal{K}u(Y))$ is a rank 2 lattice spanned by the characters

$$\kappa_1 = [\operatorname{pr}(\mathscr{I}_{\Pi})], \quad \kappa_2 = -[\operatorname{pr}(\mathscr{I}_{\Pi}(1))].$$

Figure 1: Characters in $K_{num}(\mathcal{K}u(Y^5))$ under the hexagonal coordinate.

Moduli spaces on $\mathcal{K}u(Y)$

There are some well-known results on cubic 3-folds.

Theorem (BMMS 2009, Pertusi-Yang 2020, Feyzbakhsh-Pertusi 2023)

Let Y be a smooth cubic 3-fold. Then there are isomorphisms of moduli spaces

 $M_{\sigma'}(\mathcal{K}u(Y),\kappa_1) \cong M_{\sigma'}(\mathcal{K}u(Y),\kappa_2) \cong M_{\sigma'}(\mathcal{K}u(Y),\kappa_2-\kappa_1) \cong \mathcal{F}_1(Y),$

where $M_{\sigma'}(\mathcal{K}u(Y), \kappa_1)$ is the moduli space of σ' -stable objects in $\mathcal{K}u(Y)$ with character κ_1 , and $\mathcal{F}_1(Y)$ is the Fano surface of lines in Y.

There are some well-known results on cubic 3-folds.

Theorem (BMMS 2009, Pertusi-Yang 2020, Feyzbakhsh-Pertusi 2023)

Let Y be a smooth cubic 3-fold. Then there are isomorphisms of moduli spaces

 $M_{\sigma'}(\mathcal{K}u(Y),\kappa_1) \cong M_{\sigma'}(\mathcal{K}u(Y),\kappa_2) \cong M_{\sigma'}(\mathcal{K}u(Y),\kappa_2-\kappa_1) \cong \mathcal{F}_1(Y),$

where $M_{\sigma'}(\mathcal{K}u(Y), \kappa_1)$ is the moduli space of σ' -stable objects in $\mathcal{K}u(Y)$ with character κ_1 , and $\mathcal{F}_1(Y)$ is the Fano surface of lines in Y.

Theorem (Categorical Torelli theorem for cubic 3-folds)

Let Y, Y' be two cubic 3-folds. Then $Y \cong Y' \iff \mathcal{K}u(Y) \simeq \mathcal{K}u(Y')$

There are some well-known results on cubic 3-folds.

Theorem (BMMS 2009, Pertusi-Yang 2020, Feyzbakhsh-Pertusi 2023)

Let Y be a smooth cubic 3-fold. Then there are isomorphisms of moduli spaces

 $M_{\sigma'}(\mathcal{K}u(Y),\kappa_1) \cong M_{\sigma'}(\mathcal{K}u(Y),\kappa_2) \cong M_{\sigma'}(\mathcal{K}u(Y),\kappa_2-\kappa_1) \cong \mathcal{F}_1(Y),$

where $M_{\sigma'}(\mathcal{K}u(Y), \kappa_1)$ is the moduli space of σ' -stable objects in $\mathcal{K}u(Y)$ with character κ_1 , and $\mathcal{F}_1(Y)$ is the Fano surface of lines in Y.

Theorem (Categorical Torelli theorem for cubic 3-folds)

Let Y, Y' be two cubic 3-folds. Then $Y \cong Y' \iff \mathcal{K}u(Y) \simeq \mathcal{K}u(Y')$

Idea:
$$\mathcal{K}u(Y) \simeq \mathcal{K}u(Y') \implies M_{\sigma}(\mathcal{K}u(Y), [\mathcal{F}_{\ell}]) \cong M_{\sigma'}(\mathcal{K}u(Y'), [\mathcal{F}_{\ell'}])$$

 $\implies \mathcal{F}_1(Y) \cong \mathcal{F}_1(Y')$
 $\implies Y \cong Y'$ (geometric Torelli).

Cubic 4-folds are more interesting from their connection with K3 surfaces and hyper-Kähler manifolds.

Theorem (Bayer-Lahoz-Macri-Nuer-Perry-Stellari, 2021)

Let Y be a cubic 4-fold. For a character v in the Mukai–Hodge lattice $\widetilde{H}(\mathcal{K}u(Y),\mathbb{Z})$ and a stability condition $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K}u(Y))$, the moduli space $M_{\sigma}(\mathcal{K}u(Y),v)$ is a smooth projective hyper-Kähler manifold of $\operatorname{K3}^{[n]}$ -type with dimension equal to $2 - \chi(v, v)$.

Cubic 4-folds are more interesting from their connection with K3 surfaces and hyper-Kähler manifolds.

Theorem (Bayer-Lahoz-Macri-Nuer-Perry-Stellari, 2021)

Let Y be a cubic 4-fold. For a character v in the Mukai–Hodge lattice $\widetilde{H}(\mathcal{K}u(Y),\mathbb{Z})$ and a stability condition $\sigma \in \operatorname{Stab}^{\dagger}(\mathcal{K}u(Y))$, the moduli space $M_{\sigma}(\mathcal{K}u(Y),v)$ is a smooth projective hyper-Kähler manifold of $\operatorname{K3}^{[n]}$ -type with dimension equal to $2 - \chi(v, v)$.

Theorem (Categorical Torelli theorem for cubic 4-folds) (BLMS 2017, Li-Pertusi-Zhao 2020)

Let Y, Y' be two cubic 4-folds. Then $Y \cong Y'$ iff there is an equivalence $\mathcal{K}u(Y) \to \mathcal{K}u(Y')$ whose induced map $\widetilde{H}(\mathcal{K}u(Y), \mathbb{Z}) \to \widetilde{H}(\mathcal{K}u(Y'), \mathbb{Z})$ commutes with the degree shift functor $L_{\mathcal{O}}(-\otimes \mathcal{O}(1))$.

Thank you for your attention!

Derived Obsessed Graduate Students