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Let C be a smooth projective curve over C.

For E € Coh(C), define
_ deg(E)

if rk(E) # 0, and u(E) = +o0o otherwise.
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What's a stability condition?

Let C be a smooth projective curve over C.
For E € Coh(C), define
deg(E)
E) =
HE) = (B

if rk(E) # 0, and u(E) = +o0o otherwise.

Let 0 - F -+ E — G — 0 be a short exact sequence in Coh(C). Then,
either

u(F) < n(E) < p(G)
u(F) > n(E) > p(G); or
u(F) = w(E) = pn(G)




What's a stability condition?

Let C be a smooth projective curve over C.
For E € Coh(C), define e
deg(E) 5~ H
E) = ]
if rk(E) # 0, and u(E) = +o0o otherwise.

Let 0 - F -+ E — G — 0 be a short exact sequence in Coh(C). Then,

either
u(F) < p(E) < p(G)
u(F) > p(E) > p(G); or
u(F) = p(E) = u(G)
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Definition
E € Coh(C) is called p-(semi)stable if

u(F) < (<) u(E)

for all non trivial F C E.
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Definition
E € Coh(C) is called p-(semi)stable if

p(F) < (<) u(E)

for all non trivial F C E.

Why is it useful?
© Connections to Differential Geometry (Kobayashi-Hitchin
correspondence)

© A tool to produce Moduli Spaces of Coh(C)
For instance, V,(C) is a non-singular quasi-projective variety
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© Semistable sheaves generate Coh(C) by extensions
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© Semistable sheaves generate Coh(C) by extensions

Definition
An Harder-Narasimhan filtration for E € Coh(C) is

O=F— 5 — Ep—— -+ — Ey =
NI
Ay Az

with Ag,--- , A, p-semistable and (A1) > u(Az) > -+ > u(An).
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Proof: Let E € Coh(C):
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Proof: Let E € Coh(C):
© take Ey C E the largest subsheaf of E such that p(E1) > pu(E).
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Proof: Let E € Coh(C):
© take Ey C E the largest subsheaf of E such that p(E1) > pu(E).
© let G := E/E;, so that u(E1) > p(E) > G
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What's a stability condition?

Proof: Let E € Coh(C):
take E; C E the largest subsheaf of E such that p(Ep) > u(E).
let G := E/E;, so that pu(E;) > pw(E) > G
if G is u-semistable, we're done, as

0O —E—G—0



What's a stability condition?

Proof: Let E € Coh(C):
take E; C E the largest subsheaf of E such that p(Ep) > u(E).
let G := E/E;, so that pu(E;) > pw(E) > G
if G is u-semistable, we're done, as

0O —E—G—0

otherwise, take G’ C G the largest subsheaf of G, then

Ep < E G
EQ*»G,

with u(E/Ez) = (G /G') and p(Er) > u(E/Ez).
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Let X be a smooth projective n-dimensional variety, H € Pic(X) an ample
line bundle. For E € Coh(X), define

H™ 1. ¢ (E)

m(E) = )

The problems:
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The problems:

Now defines a family of stability conditions



Higher dimensions

Let X be a smooth projective n-dimensional variety, H € Pic(X) an ample
line bundle. For E € Coh(X), define

The problems:
Now defines a family of stability conditions

Does not "mesure” torsion sheaves (rk(7T) =0 = up(T) = +o0)



Higher dimensions

Let X be a smooth projective n-dimensional variety, H € Pic(X) an ample
line bundle. For E € Coh(X), define

The problems:
Now defines a family of stability conditions

Does not "mesure” torsion sheaves (rk(7T) =0 = up(T) = +o0)
Solutions:



Higher dimensions

Let X be a smooth projective n-dimensional variety, H € Pic(X) an ample
line bundle. For E € Coh(X), define

The problems:
Now defines a family of stability conditions

Does not "mesure” torsion sheaves (rk(7T) =0 = up(T) = +o0)
Solutions:

Define polynomial stability conditions (Gieseker)



Higher dimensions

Let X be a smooth projective n-dimensional variety, H € Pic(X) an ample
line bundle. For E € Coh(X), define

The problems:
Now defines a family of stability conditions

Does not "mesure” torsion sheaves (rk(7T) =0 = up(T) = +o0)
Solutions:

Define polynomial stability conditions (Gieseker)

Try to enlarge it
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Let D be a triangulated category.

Definition (Bridgeland)
A Bridgeland stability condition (BSC) on D is a pair o = (A, Z) where:
© A is the heart of a bounded t-structure;

* Z:K(A) % A — Cis a group homomorphism that factors through a
lattice A and satisfies the conditions:
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Definition (Bridgeland)
A Bridgeland stability condition (BSC) on D is a pair o = (A, Z) where:
© A is the heart of a bounded t-structure;

* Z:K(A) % A — Cis a group homomorphism that factors through a
lattice A and satisfies the conditions:
© ImZ(E) >0, and
Re Z(E) < 0 whenever ImZ(E) =0
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Let D be a triangulated category.

Definition (Bridgeland)
A Bridgeland stability condition (BSC) on D is a pair o = (A, Z) where:
© A is the heart of a bounded t-structure;

* Z:K(A) % A — Cis a group homomorphism that factors through a
lattice A and satisfies the conditions:
© ImZ(E) >0, and
Re Z(E) < 0 whenever ImZ(E) =0
@ Every E € A has an Harder-Narasimhan filtration
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General Bridgeland Stability

Let D be a triangulated category.

A Bridgeland stability condition (BSC) on D is a pair o = (A, Z) where:
A is the heart of a bounded t-structure;

Z:K(A) & A — Cis a group homomorphism that factors through a
lattice A and satisfies the conditions:

ImZ(E) >0, and

Re Z(E) < 0 whenever ImZ(E) =0

Every E € A has an Harder-Narasimhan filtration

(Support Property)

Co = inf{ 1Z(E)l t0#£E€cA semistable} >0
lv(E)l
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-trivial F C E

for all non

semi)stable if,

(

© Z(E) € Rsg - e™V=T with ¢ € (0,1]
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Theorem (Bridgeland’s Deformation Theorem)

The natural map
Z :Stab(X) — Hom(A,C), o= (A,Z2)— Z

is a local homeomorphism. In particular, Stab(X) is a complex variety of
dimension rk(A).
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Bridgeland's Deformation Theorem

The natural map
Z :Stab(X) - Hom(A,C), o=(A,Z2)— Z

is a local homeomorphism. In particular, Stab(X) is a complex variety of
dimension rk(A).

v

For any fixed class v € A, Stab(X) has a natural walls-chambers structure:
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Let X be a smooth projective variety.
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Let X be a smooth projective variety.
© D =DbX)
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Let X be a smooth projective variety.
© D =DbX)
© v: K(A) — A will be given by the Chern characters
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How to build a BSC

Let X be a smooth projective variety.

D = D?(X)

v : K(A) — A will be given by the Chern characters

A%X) =Z-[X] > cho
AL(X) = Pic(X) > chy
A%(X) 52 chy
A3(X) 56 chs
A”('X) =~7-[p] (for Fano)



How to build a BSC

Let X be a smooth projective variety.

D = D?(X)

v : K(A) — A will be given by the Chern characters

For instance, if X is a Fano 3-fold with Pic(X)

ANX)=Z-[X] > cho
AL(X) = Pic(X) > chy
A%(X) >2-chy
A3(X) 56-chs
A"(X)=Z-[p] (for Fano)

= 7, then

1 1
N=ZXZx =L x =
XL X 7 ><6
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* Big Problem: To find A c D®(X) and Z : K(A) — C is done
case-by-case.
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* Big Problem: To find A c D®(X) and Z : K(A) — C is done
case-by-case. In general:

© Ais a n-tilt of Coh(X)
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[e] lelelelelele]o]e}

* Big Problem: To find A c D®(X) and Z : K(A) — C is done
case-by-case. In general:

© Ais a n-tilt of Coh(X)
 Z: K(A) — C should depend on all the Chern characters of X
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How to build a BSC

Big Problem: To find A ¢ D?(X) and Z : K(A) — C is done
case-by-case. In general:
A is a n-tilt of Coh(X)
Z : K(A) — C should depend on all the Chern characters of X
We need some inequality to verify the Support Property
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Let X be a smooth projective curve of genus one.
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[e]e] lelelelele]ole}

Let X be a smooth projective curve of genus one.
© A = Coh(X) is the heart of the bounded t-structure

D=0 = {X € DP(A) | H'(X) = 0 for all i > 0}
D=0 = {X € DP(A) | H'(X) = 0 for all i < 0}
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BSC on Curves

Let X be a smooth projective curve of genus one.
A = Coh(X) is the heart of the bounded t-structure

D=0 = {X € DP(A)| H'(X) = 0 for all i > 0}
D=0 = {X € DP(A)| H'(X) = 0 for all i < 0}

Z: K(A) — Cis given by Z(E) = —deg(E) + i rk(E)



BSC on Curves

Let X be a smooth projective curve of genus one.
A = Coh(X) is the heart of the bounded t-structure

D=0 = {X € DP(A)| H'(X) = 0 for all i > 0}
D=0 = {X € DP(A)| H'(X) = 0 for all i < 0}

Z: K(A) — Cis given by Z(E) = —deg(E) + i rk(E)

The space of BSC is isometric to Stab(X) = G~L+(2,R), the universal
covering space of GL*(2,R).
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For simplicity, assume Pic(X) = Z for now on.
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For simplicity, assume Pic(X) = Z for now on. So, for a fixed ample line
bundle H € Pic(X),

ch = (H3? - chg, H? - chy, H - chy, ch3).
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BSC on Surfaces

For simplicity, assume Pic(X) = Z for now on. So, for a fixed ample line
bundle H € Pic(X),

ch = (H3 - chg, H? - chy, H - chy, chs).

Let X be a smooth projective surface. We start with the same
construction:



BSC on Surfaces

For simplicity, assume Pic(X) = Z for now on. So, for a fixed ample line
bundle H € Pic(X),

ch = (H3 - chg, H? - chy, H - chy, chs).

Let X be a smooth projective surface. We start with the same
construction:

A = Coh(X)



BSC on Surfaces

For simplicity, assume Pic(X) = Z for now on. So, for a fixed ample line
bundle H € Pic(X),

ch = (H3 - chg, H? - chy, H - chy, chs).

Let X be a smooth projective surface. We start with the same
construction:

A = Coh(X)
Z : K(A) — C given by Z(E) = —ch1(E) + i cho(E)



BSC on Surfaces

For simplicity, assume Pic(X) = Z for now on. So, for a fixed ample line
bundle H € Pic(X),

ch = (H3 - chg, H? - chy, H - chy, chs).

Let X be a smooth projective surface. We start with the same
construction:

A = Coh(X)
Z : K(A) — C given by Z(E) = —ch1(E) + i cho(E)
This cannot work: let x € X be a closed point, then

cho(k(x)) = chy(k(x)) =0 = Z(k(x)) =0
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The solution: Produce a new heart A% by tilting A

A

D?(X)
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The solution: Produce a new heart A% by tilting A

A

T F DA(X)
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The solution: Produce a new heart A% by tilting A

Fl|T F D5(X)
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The solution: Produce a new heart A% by tilting A

At

{J'"[l] T ; D°(X)
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For 5 € R, consider the torsion pair
T :={E € CohX|VE - G #0, ¢z(G) > B};

Fp:={E € Coh X |V0 # F < E, ¢z(F) < B}.
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0000080000

For 5 € R, consider the torsion pair
T :={E € CohX|VE - G #0, ¢z(G) > B};

Fp:={E € Coh X |V0 # F — E, ¢z(F) < 5}.
and let B% := (F3[1], T3) be the tilt of Coh X with respect to this pair, i.e.,
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BSC on Surfaces

For 5 € R, consider the torsion pair
Ts 1= {E € Coh X |VE — G #0, $2(G) > B};

Fs:={E € CohX|VO# F < E, ¢(F) < }.

and let B? := (F3[1], T3) be the tilt of Coh X with respect to this pair, i.e.,
B € DP(X) is in B iff

HO(B) € Tz, H Y(B) € Fs, and H'(B) = 0 for j # 0, —1.



Part 111
0000008000

Definition (Twisted Chern character)
For 3 € R, define ch?(E) := exp(—p3) - ch(E).
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Definition (Twisted Chern character)
For 3 € R, define ch?(E) := exp(—p3) - ch(E).

Take o € R, define the group homomorphism
i 1
Zi(B) == — (chg(B) — §a2cho(3)> +V/—=1ch?(B)

for B € BP.
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Definition (Twisted Chern character)
For 3 € R, define ch?(E) := exp(—p3) - ch(E).

Take o € R, define the group homomorphism
i 1
Zi(B) == — (chg(B) — §a2cho(3)> +V/—=1ch?(B)

for B € B,
Theorem (Bridgeland)

Let X be a K3 surface. Then the pair o, 5 = (57, Z;’,’E,) is a BSC.

Guido Neulaender IMECC - Unicamp 17 /28
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© H-N filtration: easy
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Proof: it's actually quite hard.
© H-N filtration: easy
© For the support property, the key is

Lemma (Bogomolov-Gieseker inequality)

Any B € B? satisfies

Q1" (B) := chy(B)? — 2cho(B) cha(B) > 0.

Guido Neulaender IMECC - Unicamp 18 /28
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For X a smooth projective 3-fold, we tilt again:
consider the torsion pair in B°

Top = {E € BP|VE - G #0, va5(G) > 0};
Fupi={E€BP|V0#F < E, vyp(F) <0}.
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BSC on 3-folds

For X a smooth projective 3-fold, we tilt again:
consider the torsion pair in B?

Top = {E € B}|VE - G #0, v45(G) > 0};
Fop ={E€B?|Y0#F < E, v,5(F) < 0}.

then A% := (F, 3[1], Ta5) is the tilt of B® with respect to the pair, i.e.,



BSC on 3-folds

For X a smooth projective 3-fold, we tilt again:
consider the torsion pair in B?

Top = {E € B}|VE - G #0, v45(G) > 0};

Fop ={E€B?|Y0#F < E, v,5(F) < 0}.
then AP := (F, 3[1], Ta ) is the tilt of B? with respect to the pair, i.e.,
A € DP(X) is in A%P iff

HE(A) € T, Hp'(A) € Fup, € Hg(A) =0 para i # 0, 1.



BSC on 3-folds

For X a smooth projective 3-fold, we tilt again:
consider the torsion pair in B?

Top = {E € B}|VE - G #0, v45(G) > 0};

Fop ={E€B?|Y0#F < E, v,5(F) < 0}.
then AP := (F, 3[1], Ta ) is the tilt of B? with respect to the pair, i.e.,
A € DP(X) is in A%P iff

HE(A) € T, Hp'(A) € Fup, € Hg(A) =0 para i # 0, 1.
Take s € RT, we define the group homomorphism

Zops(A) = — chg(A)Jr <s T é) a? chf(A)+ﬁ <ch§(A) — %az chO(A)>
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Theorem (Bayer, Macri, Toda)

The pair 0485 = (A8, Zaps)is a BSCon X if it satisfies the
generalized Gieseker-Bogomolov inequality.
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Theorem (Bayer, Macri, Toda)

The pair 0485 = (A8, Zaps)is a BSCon X if it satisfies the
generalized Gieseker-Bogomolov inequality.

Conjecture (generalized Gieseker-Bogomolov)

Let X be a Fano threefold, if B € B? is Zé’;’é-semistable, then

Qup(B) = a?Q"(B) + 4chi(B)? — 6.¢ch/ (B) ch(B) > 0.
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Theorem (Bayer, Macri, Toda)

The pair 0485 = (A8, Zaps)is a BSCon X if it satisfies the
generalized Gieseker-Bogomolov inequality.

Conjecture (generalized Gieseker-Bogomolov)

Let X be a Fano threefold, if B € B? is Zé’;’é-semistable, then

Qup(B) = a?Q"(B) + 4chi(B)? — 6.¢ch/ (B) ch(B) > 0.

© Proven by Li for Fano threefolds with Pic(X) = Z
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BSC on 3-folds

The pair 0455 = (AXP, Zy3,s) is a BSC on X if it satisfies the
generalized Gieseker-Bogomolov inequality.

Let X be a Fano threefold, if B € B? is Zéi’g—semistable, then

Qu5(B) = a?Q'"(B) + 4chl(B)? — 6.¢ch? (B) ch(B) > 0.

Proven by Li for Fano threefolds with Pic(X) =Z
False for X = BI,(PP3) (Schmidt, 2017)
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Definition (Jardim, Maciocia, Martinez)

Let v : [0,00) — H be a path, an object A € D?(X) is asymptotic
Z, g,s-(semi)stable along v if, for a fixed s > 0, the following conditions
hold:
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Definition (Jardim, Maciocia, Martinez)
Let v : [0,00) — H be a path, an object A € D?(X) is asymptotic
Z, g,s-(semi)stable along v if, for a fixed s > 0, the following conditions
hold:
1 there exists to > 0 such that A € A7(®) for all t > to;
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Asymptotic stability: the tool

Let 7 : [0,00) — H be a path, an object A € D?(X) is asymptotic
Zq g,s-(semi)stable along + if, for a fixed s > 0, the following conditions
hold:

there exists to > 0 such that A € A% for all ¢t > ty:

there exists t; > tg such that, for all t > t;, A€ A1) js

Z,(+),s-(semi)stable.
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Asymptotic stability: results (Jardim, Maciocia)

For a fixed s > 0 and chg # 0, the plane is divided into three regions:

o, Ch

Figure: Numerical wall for v = (2,0,—3,0).
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For a fixed s > 0 and chg # 0, the plane is divided into three regions:

ey

Gieseker -

Figure: Numerical wall for v = (2,0,—3,0).
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Figure: Numerical wall for v = (0,1, 1,0).
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Asymptotic stability: more results

Instead, for chg = 0, the plane is divided into two regions:

{A(v) < B}
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Fun fact: This result is actually mine! :-)
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Applications:

Higher bound for globals sections on curves
(Fayzbakhsh)
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Thank you
for watching!
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