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What’s a stability condition?

Let C be a smooth projective curve over C.

For E ∈ Coh(C ), define

µ(E ) =
deg(E )

rk(E )

if rk(E ) ̸= 0, and µ(E ) = +∞ otherwise.

See-saw Property

Let 0 → F → E → G → 0 be a short exact sequence in Coh(C ). Then,
either

µ(F ) < µ(E ) < µ(G );

µ(F ) > µ(E ) > µ(G ); or

µ(F ) = µ(E ) = µ(G ).
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What’s a stability condition?

Definition

E ∈ Coh(C ) is called µ-(semi)stable if

µ(F ) < (≤)µ(E )

for all non trivial F ⊆ E .

Why is it useful?

• Connections to Differential Geometry (Kobayashi-Hitchin
correspondence)

• A tool to produce Moduli Spaces of Coh(C )
For instance, Vr (C ) is a non-singular quasi-projective variety

Guido Neulaender IMECC - Unicamp 4 / 28
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What’s a stability condition?

• Semistable sheaves generate Coh(C ) by extensions

Definition

An Harder-Narasimhan filtration for E ∈ Coh(C ) is

0 = E0 E1 E2 · · · En = E

A1 A2 An

0 0 0

with A1, · · · ,An µ-semistable and µ(A1) > µ(A2) > · · · > µ(An).
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What’s a stability condition?

Proof: Let E ∈ Coh(C ):

• take E1 ⊂ E the largest subsheaf of E such that µ(E1) > µ(E ).

• let G := E/E1, so that µ(E1) > µ(E ) > G

• if G is µ-semistable, we’re done, as

0 → E1 → E → G → 0

• otherwise, take G ′ ⊂ G the largest subsheaf of G , then

E1 E G

E2 G ′

with µ(E/E2) = µ(G/G ′) and µ(E1) > µ(E/E2). □
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Higher dimensions

Let X be a smooth projective n-dimensional variety, H ∈ Pic(X ) an ample
line bundle. For E ∈ Coh(X ), define

µH(E ) :=
Hn−1 · c1(E )

rk(E )
.

The problems:

• Now defines a family of stability conditions

• Does not ”mesure” torsion sheaves (rk(T ) = 0 =⇒ µH(T ) = +∞)

Solutions:

• Define polynomial stability conditions (Gieseker)

• Try to enlarge it

Guido Neulaender IMECC - Unicamp 7 / 28
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General Bridgeland Stability

Let D be a triangulated category.

Definition (Bridgeland)

A Bridgeland stability condition (BSC) on D is a pair σ = (A,Z ) where:

• A is the heart of a bounded t-structure;

• Z : K (A)
ν−→ Λ → C is a group homomorphism that factors through a

lattice Λ and satisfies the conditions:

i ImZ (E ) ≥ 0, and
ReZ (E ) < 0 whenever ImZ (E ) = 0

ii Every E ∈ A has an Harder-Narasimhan filtration
iii (Support Property)

Cσ := inf

{
|Z (E )|
∥ν(E )∥

: 0 ̸= E ∈ A semistable

}
> 0

Guido Neulaender IMECC - Unicamp 8 / 28



Part I Part II Part III Part IV Part V References

General Bridgeland Stability

Let D be a triangulated category.

Definition (Bridgeland)

A Bridgeland stability condition (BSC) on D is a pair σ = (A,Z ) where:

• A is the heart of a bounded t-structure;

• Z : K (A)
ν−→ Λ → C is a group homomorphism that factors through a

lattice Λ and satisfies the conditions:

i ImZ (E ) ≥ 0, and
ReZ (E ) < 0 whenever ImZ (E ) = 0

ii Every E ∈ A has an Harder-Narasimhan filtration
iii (Support Property)

Cσ := inf

{
|Z (E )|
∥ν(E )∥

: 0 ̸= E ∈ A semistable

}
> 0

Guido Neulaender IMECC - Unicamp 8 / 28



Part I Part II Part III Part IV Part V References

General Bridgeland Stability

Let D be a triangulated category.

Definition (Bridgeland)

A Bridgeland stability condition (BSC) on D is a pair σ = (A,Z ) where:

• A is the heart of a bounded t-structure;

• Z : K (A)
ν−→ Λ → C is a group homomorphism that factors through a

lattice Λ and satisfies the conditions:

i ImZ (E ) ≥ 0, and
ReZ (E ) < 0 whenever ImZ (E ) = 0

ii Every E ∈ A has an Harder-Narasimhan filtration
iii (Support Property)

Cσ := inf

{
|Z (E )|
∥ν(E )∥

: 0 ̸= E ∈ A semistable

}
> 0

Guido Neulaender IMECC - Unicamp 8 / 28



Part I Part II Part III Part IV Part V References

General Bridgeland Stability

Let D be a triangulated category.

Definition (Bridgeland)

A Bridgeland stability condition (BSC) on D is a pair σ = (A,Z ) where:

• A is the heart of a bounded t-structure;

• Z : K (A)
ν−→ Λ → C is a group homomorphism that factors through a

lattice Λ and satisfies the conditions:

i ImZ (E ) ≥ 0, and
ReZ (E ) < 0 whenever ImZ (E ) = 0

ii Every E ∈ A has an Harder-Narasimhan filtration
iii (Support Property)

Cσ := inf

{
|Z (E )|
∥ν(E )∥

: 0 ̸= E ∈ A semistable

}
> 0

Guido Neulaender IMECC - Unicamp 8 / 28



Part I Part II Part III Part IV Part V References

General Bridgeland Stability

Let D be a triangulated category.

Definition (Bridgeland)

A Bridgeland stability condition (BSC) on D is a pair σ = (A,Z ) where:

• A is the heart of a bounded t-structure;

• Z : K (A)
ν−→ Λ → C is a group homomorphism that factors through a

lattice Λ and satisfies the conditions:

i ImZ (E ) ≥ 0, and
ReZ (E ) < 0 whenever ImZ (E ) = 0

ii Every E ∈ A has an Harder-Narasimhan filtration
iii (Support Property)

Cσ := inf

{
|Z (E )|
∥ν(E )∥

: 0 ̸= E ∈ A semistable

}
> 0

Guido Neulaender IMECC - Unicamp 8 / 28



Part I Part II Part III Part IV Part V References

General Bridgeland Stability

Let D be a triangulated category.

Definition (Bridgeland)

A Bridgeland stability condition (BSC) on D is a pair σ = (A,Z ) where:

• A is the heart of a bounded t-structure;

• Z : K (A)
ν−→ Λ → C is a group homomorphism that factors through a

lattice Λ and satisfies the conditions:

i ImZ (E ) ≥ 0, and
ReZ (E ) < 0 whenever ImZ (E ) = 0

ii Every E ∈ A has an Harder-Narasimhan filtration

iii (Support Property)

Cσ := inf

{
|Z (E )|
∥ν(E )∥

: 0 ̸= E ∈ A semistable

}
> 0

Guido Neulaender IMECC - Unicamp 8 / 28



Part I Part II Part III Part IV Part V References

General Bridgeland Stability

Let D be a triangulated category.

Definition (Bridgeland)

A Bridgeland stability condition (BSC) on D is a pair σ = (A,Z ) where:

• A is the heart of a bounded t-structure;

• Z : K (A)
ν−→ Λ → C is a group homomorphism that factors through a

lattice Λ and satisfies the conditions:

i ImZ (E ) ≥ 0, and
ReZ (E ) < 0 whenever ImZ (E ) = 0

ii Every E ∈ A has an Harder-Narasimhan filtration
iii (Support Property)

Cσ := inf

{
|Z (E )|
∥ν(E )∥

: 0 ̸= E ∈ A semistable

}
> 0

Guido Neulaender IMECC - Unicamp 8 / 28



Part I Part II Part III Part IV Part V References

General Bridgeland Stability

R

R
√
−1

Z (E )

ϕ
ϕE

ϕF

Z (F )

• Z (E ) ∈ R>0 · eπϕ
√
−1 with ϕ ∈ (0, 1]

• E ∈ A is (semi)stable if, for all non-trivial F ⊂ E , ϕF < (≤)ϕE
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Bridgeland’s Deformation Theorem

Theorem (Bridgeland’s Deformation Theorem)

The natural map

Z : Stab(X ) → Hom(Λ,C), σ = (A,Z ) 7→ Z

is a local homeomorphism. In particular, Stab(X ) is a complex variety of
dimension rk(Λ).

For any fixed class v ∈ Λ, Stab(X ) has a natural walls-chambers structure:

K

Ww1(v)
Ww2(v)

σ1
σ2

σ3

Guido Neulaender IMECC - Unicamp 10 / 28



Part I Part II Part III Part IV Part V References

Bridgeland’s Deformation Theorem

Theorem (Bridgeland’s Deformation Theorem)

The natural map

Z : Stab(X ) → Hom(Λ,C), σ = (A,Z ) 7→ Z

is a local homeomorphism. In particular, Stab(X ) is a complex variety of
dimension rk(Λ).

For any fixed class v ∈ Λ, Stab(X ) has a natural walls-chambers structure:

K

Ww1(v)
Ww2(v)

σ1
σ2

σ3

Guido Neulaender IMECC - Unicamp 10 / 28



Part I Part II Part III Part IV Part V References

How to build a BSC

Let X be a smooth projective variety.

• D = Db(X )
• ν : K (A) → Λ will be given by the Chern characters

A(X ) =



A0(X ) = Z · [X ] ∋ ch0

A1(X ) ∼= Pic(X ) ∋ ch1

A2(X ) ∋ 2 · ch2
A3(X ) ∋ 6 · ch3

...

An(X ) ∼= Z · [p] (for Fano)

For instance, if X is a Fano 3-fold with Pic(X ) = Z, then

Λ = Z× Z× 1

2
Z× 1

6
Z

Guido Neulaender IMECC - Unicamp 11 / 28
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How to build a BSC

• Big Problem: To find A ⊂ Db(X ) and Z : K (A) → C is done
case-by-case.

In general:

1 A is a n-tilt of Coh(X )
2 Z : K (A) → C should depend on all the Chern characters of X
3 We need some inequality to verify the Support Property
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BSC on Curves

Let X be a smooth projective curve of genus one.

• A = Coh(X ) is the heart of the bounded t-structure

D≤0 = {X ∈ Db(A) |H i (X ) = 0 for all i > 0}
D≥0 = {X ∈ Db(A) |H i (X ) = 0 for all i < 0}

• Z : K (A) → C is given by Z (E ) = − deg(E ) + i rk(E )

Theorem (Bridgeland)

The space of BSC is isometric to Stab(X ) ∼= G̃L
+
(2,R), the universal

covering space of GL+(2,R).
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BSC on Surfaces

For simplicity, assume Pic(X ) = Z for now on.

So, for a fixed ample line
bundle H ∈ Pic(X ),

ch = (H3 · ch0,H2 · ch1,H · ch2, ch3).

Let X be a smooth projective surface. We start with the same
construction:

• A = Coh(X )

• Z : K (A) → C given by Z (E ) = − ch1(E ) + i ch0(E )

This cannot work: let x ∈ X be a closed point, then

ch0(k(x)) = ch1(k(x)) = 0 =⇒ Z (k(x)) = 0
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BSC on Surfaces

The solution: Produce a new heart A# by tilting A

Db(X )

A

T FF [1]

A♯
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BSC on Surfaces

For β ∈ R, consider the torsion pair

Tβ := {E ∈ CohX | ∀E ↠ G ̸= 0, ϕZ (G ) > β};

Fβ := {E ∈ CohX | ∀0 ̸= F ↪→ E , ϕZ (F ) ≤ β}.

and let Bβ := ⟨Fβ[1], Tβ⟩ be the tilt of CohX with respect to this pair, i.e.,
B ∈ Db(X ) is in Bβ iff

H0(B) ∈ Tβ, H−1(B) ∈ Fβ, and Hi (B) = 0 for i ̸= 0,−1.
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BSC on Surfaces

Definition (Twisted Chern character)

For β ∈ R, define chβ(E ) := exp(−β) · ch(E ).

Take α ∈ R+, define the group homomorphism

Z tilt
α,β(B) := −

(
chβ2 (B)−

1

2
α2 ch0(B)

)
+
√
−1 chβ1 (B)

for B ∈ Bβ.

Theorem (Bridgeland)

Let X be a K3 surface. Then the pair σα,β = (Bβ,Z tilt
α,β) is a BSC.
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BSC on Surfaces

Proof:

it’s actually quite hard.

• H-N filtration: easy

• For the support property, the key is

Lemma (Bogomolov-Gieseker inequality)

Any B ∈ Bβ satisfies

Qtilt(B) := ch1(B)
2 − 2 ch0(B) ch2(B) ≥ 0.

□
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BSC on 3-folds

For X a smooth projective 3-fold, we tilt again:
consider the torsion pair in Bβ

Tα,β := {E ∈ Bβ | ∀E ↠ G ̸= 0, να,β(G ) > 0};

Fα,β := {E ∈ Bβ | ∀0 ̸= F ↪→ E , να,β(F ) ≤ 0}.

then Aα,β := ⟨Fα,β[1], Tα,β⟩ is the tilt of Bβ with respect to the pair, i.e.,
A ∈ Db(X ) is in Aα,β iff

H0
B(A) ∈ Tα,β, H−1

B (A) ∈ Fα,β, e Hi
B(A) = 0 para i ̸= 0,−1.

Take s ∈ R+, we define the group homomorphism

Zα,β,s(A) = − chβ3 (A)+

(
s +

1

6

)
α2 chβ1 (A)+

√
−1

(
chβ2 (A)−

1

2
α2 ch0(A)

)

Guido Neulaender IMECC - Unicamp 19 / 28



Part I Part II Part III Part IV Part V References

BSC on 3-folds

For X a smooth projective 3-fold, we tilt again:
consider the torsion pair in Bβ

Tα,β := {E ∈ Bβ | ∀E ↠ G ̸= 0, να,β(G ) > 0};

Fα,β := {E ∈ Bβ | ∀0 ̸= F ↪→ E , να,β(F ) ≤ 0}.

then Aα,β := ⟨Fα,β[1], Tα,β⟩ is the tilt of Bβ with respect to the pair, i.e.,

A ∈ Db(X ) is in Aα,β iff

H0
B(A) ∈ Tα,β, H−1

B (A) ∈ Fα,β, e Hi
B(A) = 0 para i ̸= 0,−1.

Take s ∈ R+, we define the group homomorphism

Zα,β,s(A) = − chβ3 (A)+

(
s +

1

6

)
α2 chβ1 (A)+

√
−1

(
chβ2 (A)−

1

2
α2 ch0(A)

)

Guido Neulaender IMECC - Unicamp 19 / 28



Part I Part II Part III Part IV Part V References

BSC on 3-folds

For X a smooth projective 3-fold, we tilt again:
consider the torsion pair in Bβ

Tα,β := {E ∈ Bβ | ∀E ↠ G ̸= 0, να,β(G ) > 0};

Fα,β := {E ∈ Bβ | ∀0 ̸= F ↪→ E , να,β(F ) ≤ 0}.

then Aα,β := ⟨Fα,β[1], Tα,β⟩ is the tilt of Bβ with respect to the pair, i.e.,
A ∈ Db(X ) is in Aα,β iff

H0
B(A) ∈ Tα,β, H−1

B (A) ∈ Fα,β, e Hi
B(A) = 0 para i ̸= 0,−1.

Take s ∈ R+, we define the group homomorphism

Zα,β,s(A) = − chβ3 (A)+

(
s +

1

6

)
α2 chβ1 (A)+

√
−1

(
chβ2 (A)−

1

2
α2 ch0(A)

)

Guido Neulaender IMECC - Unicamp 19 / 28



Part I Part II Part III Part IV Part V References

BSC on 3-folds

For X a smooth projective 3-fold, we tilt again:
consider the torsion pair in Bβ

Tα,β := {E ∈ Bβ | ∀E ↠ G ̸= 0, να,β(G ) > 0};

Fα,β := {E ∈ Bβ | ∀0 ̸= F ↪→ E , να,β(F ) ≤ 0}.

then Aα,β := ⟨Fα,β[1], Tα,β⟩ is the tilt of Bβ with respect to the pair, i.e.,
A ∈ Db(X ) is in Aα,β iff

H0
B(A) ∈ Tα,β, H−1

B (A) ∈ Fα,β, e Hi
B(A) = 0 para i ̸= 0,−1.

Take s ∈ R+, we define the group homomorphism

Zα,β,s(A) = − chβ3 (A)+

(
s +

1

6

)
α2 chβ1 (A)+

√
−1

(
chβ2 (A)−

1

2
α2 ch0(A)

)
Guido Neulaender IMECC - Unicamp 19 / 28



Part I Part II Part III Part IV Part V References

BSC on 3-folds

Theorem (Bayer, Macr̀ı, Toda)

The pair σα,β,s = (Aα,β,Zα,β,s) is a BSC on X if it satisfies the
generalized Gieseker-Bogomolov inequality.

Conjecture (generalized Gieseker-Bogomolov)

Let X be a Fano threefold, if B ∈ Bβ is Z tilt
α,β-semistable, then

Qα,β(B) = α2Qtilt(B) + 4 chβ2 (B)
2 − 6 chβ1 (B) ch

β
3 (B) ≥ 0.

• Proven by Li for Fano threefolds with Pic(X ) = Z
• False for X = Blp(P3) (Schmidt, 2017)
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Asymptotic stability: the tool

Definition (Jardim, Maciocia, Martinez)

Let γ : [0,∞) → H be a path, an object A ∈ Db(X ) is asymptotic
Zα,β,s -(semi)stable along γ if, for a fixed s > 0, the following conditions
hold:

1 there exists t0 > 0 such that A ∈ Aγ(t) for all t > t0;

2 there exists t1 > t0 such that, for all t > t1, A ∈ Aγ(t) is
Zγ(t),s -(semi)stable.
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Asymptotic stability: results (Jardim, Maciocia)

For a fixed s > 0 and ch0 ̸= 0, the plane is divided into three regions:

β

α

Θ−
v Θ+

v

R0
v

R−
v R+

v

Gieseker (Gieseker)∨

Figure: Numerical wall for v = (2, 0,−3, 0).
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Fun fact: This result is actually mine! :-)
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Where do we go from here?

• Going for higher dimension is hard!
For Pn, we know Stab(X ) in non-empty (Mu, 2020)

• There is no general construction for cubic-fourfolds
Yet, one can define BSC on it’s Kusnetsov component!
(Bayer, Lahoz, Macr̀ı, Stellari)

• Applications:
Higher bound for globals sections on curves
(Fayzbakhsh)
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Thank you
for watching!
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