An introduction to Bridgeland stability conditions on threefolds

Guido Neulaender

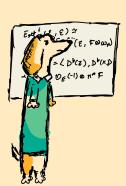
Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

October 28th, 2025

e-mail: g217100@dac.unicamp.br

Index

- 1 Part I Stability conditions
- 2 Part II Bridgeland stability conditions
- Part III From curves to 3-folds
- 4 Part IV Some stable objects
- Part V What is next?



Let C be a smooth projective curve over \mathbb{C} .

Let C be a smooth projective curve over \mathbb{C} . For $E \in Coh(C)$, define

$$\mu(E) = \frac{\deg(E)}{\operatorname{rk}(E)}$$

if $\operatorname{rk}(E) \neq 0$, and $\mu(E) = +\infty$ otherwise.

Let C be a smooth projective curve over \mathbb{C} . For $E \in Coh(C)$, define

$$\mu(E) = \frac{\deg(E)}{\operatorname{rk}(E)}$$

if $rk(E) \neq 0$, and $\mu(E) = +\infty$ otherwise.

See-saw Property

Let $0 \to F \to E \to G \to 0$ be a short exact sequence in Coh(C). Then, either

$$\mu(F) < \mu(E) < \mu(G);$$

 $\mu(F) > \mu(E) > \mu(G);$ or
 $\mu(F) = \mu(E) = \mu(G).$

Let C be a smooth projective curve over \mathbb{C} . For $E \in Coh(C)$, define

$$\mu(E) = \frac{\deg(E)}{\operatorname{rk}(E)}$$

if $rk(E) \neq 0$, and $\mu(E) = +\infty$ otherwise.

See-saw Property

Let $0 \to F \to E \to G \to 0$ be a short exact sequence in Coh(C). Then, either

$$\mu(F) < \mu(E) < \mu(G);$$

 $\mu(F) > \mu(E) > \mu(G);$ or
 $\mu(F) = \mu(E) = \mu(G).$

Definition

 $E \in Coh(C)$ is called μ -(semi)stable if

$$\mu(F) < (\leq) \mu(E)$$

for all non trivial $F \subseteq E$.

Definition

 $E \in Coh(C)$ is called μ -(semi)stable if

$$\mu(F) < (\leq) \mu(E)$$

for all non trivial $F \subseteq E$.

Why is it useful?

Definition

 $E \in Coh(C)$ is called μ -(semi)stable if

$$\mu(F) < (\leq) \mu(E)$$

for all non trivial $F \subseteq E$.

Why is it useful?

Connections to Differential Geometry (Kobayashi-Hitchin correspondence)

Definition

 $E \in Coh(C)$ is called μ -(semi)stable if

$$\mu(F) < (\leq) \mu(E)$$

for all non trivial $F \subseteq E$.

Why is it useful?

- Connections to Differential Geometry (Kobayashi-Hitchin correspondence)
- A tool to produce Moduli Spaces of Coh(C)

t I Part II Part III Part IV Part V Reference

What's a stability condition?

Definition

 $E \in Coh(C)$ is called μ -(semi)stable if

$$\mu(F) < (\leq) \mu(E)$$

for all non trivial $F \subseteq E$.

Why is it useful?

- Connections to Differential Geometry (Kobayashi-Hitchin correspondence)
- A tool to produce Moduli Spaces of Coh(C)For instance, $V_r(C)$ is a non-singular quasi-projective variety

Semistable sheaves generate Coh(C) by extensions

Semistable sheaves generate Coh(C) by extensions

Definition

An Harder-Narasimhan filtration for $E \in Coh(C)$ is

with A_1, \dots, A_n μ -semistable and $\mu(A_1) > \mu(A_2) > \dots > \mu(A_n)$.

Proof: Let $E \in Coh(C)$:

Proof: Let $E \in Coh(C)$:

• take $E_1 \subset E$ the largest subsheaf of E such that $\mu(E_1) > \mu(E)$.

Proof: Let $E \in Coh(C)$:

- take $E_1 \subset E$ the largest subsheaf of E such that $\mu(E_1) > \mu(E)$.
- let $G := E/E_1$, so that $\mu(E_1) > \mu(E) > G$

Proof: Let $E \in Coh(C)$:

- take $E_1 \subset E$ the largest subsheaf of E such that $\mu(E_1) > \mu(E)$.
- let $G := E/E_1$, so that $\mu(E_1) > \mu(E) > G$
- if G is μ -semistable, we're done, as

$$0 \rightarrow E_1 \rightarrow E \rightarrow G \rightarrow 0$$

Proof: Let $E \in Coh(C)$:

- take $E_1 \subset E$ the largest subsheaf of E such that $\mu(E_1) > \mu(E)$.
- let $G := E/E_1$, so that $\mu(E_1) > \mu(E) > G$
- if G is μ -semistable, we're done, as

$$0 \rightarrow E_1 \rightarrow E \rightarrow G \rightarrow 0$$

• otherwise, take $G' \subset G$ the largest subsheaf of G, then

$$E_1 \stackrel{\longleftarrow}{\longrightarrow} E \stackrel{\longrightarrow}{\longrightarrow} G$$

$$\uparrow \qquad \qquad \uparrow$$

$$E_2 \stackrel{\longrightarrow}{\longrightarrow} G'$$

with
$$\mu(E/E_2) = \mu(G/G')$$
 and $\mu(E_1) > \mu(E/E_2)$.

Let X be a smooth projective n-dimensional variety, $H \in Pic(X)$ an ample line bundle. For $E \in Coh(X)$, define

$$\mu_H(E) := \frac{H^{n-1} \cdot c_1(E)}{rk(E)}.$$

The problems:

Let X be a smooth projective n-dimensional variety, $H \in Pic(X)$ an ample line bundle. For $E \in Coh(X)$, define

$$\mu_H(E) := \frac{H^{n-1} \cdot c_1(E)}{rk(E)}.$$

The problems:

Now defines a family of stability conditions

Let X be a smooth projective n-dimensional variety, $H \in Pic(X)$ an ample line bundle. For $E \in Coh(X)$, define

$$\mu_H(E) := \frac{H^{n-1} \cdot c_1(E)}{rk(E)}.$$

The problems:

- Now defines a family of stability conditions
- Does not "mesure" torsion sheaves $(rk(T) = 0 \implies \mu_H(T) = +\infty)$

Let X be a smooth projective n-dimensional variety, $H \in Pic(X)$ an ample line bundle. For $E \in Coh(X)$, define

$$\mu_H(E) := \frac{H^{n-1} \cdot c_1(E)}{rk(E)}.$$

The problems:

- Now defines a family of stability conditions
- Does not "mesure" torsion sheaves $(\operatorname{rk}(T) = 0 \implies \mu_H(T) = +\infty)$

Solutions:

Let X be a smooth projective n-dimensional variety, $H \in Pic(X)$ an ample line bundle. For $E \in Coh(X)$, define

$$\mu_H(E) := \frac{H^{n-1} \cdot c_1(E)}{rk(E)}.$$

The problems:

- Now defines a family of stability conditions
- Does not "mesure" torsion sheaves $(\operatorname{rk}(T) = 0 \implies \mu_H(T) = +\infty)$

Solutions:

Define polynomial stability conditions (Gieseker)

Let X be a smooth projective n-dimensional variety, $H \in Pic(X)$ an ample line bundle. For $E \in Coh(X)$, define

$$\mu_H(E) := \frac{H^{n-1} \cdot c_1(E)}{rk(E)}.$$

The problems:

- Now defines a family of stability conditions
- Does not "mesure" torsion sheaves $(\operatorname{rk}(T) = 0 \implies \mu_H(T) = +\infty)$

Solutions:

- Define polynomial stability conditions (Gieseker)
- Try to enlarge it

Let \mathcal{D} be a triangulated category.

Let \mathcal{D} be a triangulated category.

Definition (Bridgeland)

A Bridgeland stability condition (BSC) on \mathcal{D} is a pair $\sigma = (\mathcal{A}, \mathcal{Z})$ where:

Let $\mathcal D$ be a triangulated category.

Definition (Bridgeland)

A Bridgeland stability condition (BSC) on \mathcal{D} is a pair $\sigma = (\mathcal{A}, Z)$ where:

A is the heart of a bounded t-structure;

Let $\mathcal D$ be a triangulated category.

Definition (Bridgeland)

A Bridgeland stability condition (BSC) on \mathcal{D} is a pair $\sigma = (\mathcal{A}, Z)$ where:

- A is the heart of a bounded t-structure;
- $Z: K(A) \xrightarrow{\nu} \Lambda \to \mathbb{C}$ is a group homomorphism that factors through a lattice Λ and satisfies the conditions:

Let $\mathcal D$ be a triangulated category.

Definition (Bridgeland)

A Bridgeland stability condition (BSC) on \mathcal{D} is a pair $\sigma = (\mathcal{A}, Z)$ where:

- A is the heart of a bounded t-structure;
- $Z: K(A) \xrightarrow{\nu} \Lambda \to \mathbb{C}$ is a group homomorphism that factors through a lattice Λ and satisfies the conditions:
 - 1 Im $Z(E) \ge 0$, and Re Z(E) < 0 whenever Im Z(E) = 0

Let $\mathcal D$ be a triangulated category.

Definition (Bridgeland)

A Bridgeland stability condition (BSC) on \mathcal{D} is a pair $\sigma = (\mathcal{A}, Z)$ where:

- A is the heart of a bounded t-structure;
- $Z: K(A) \xrightarrow{\nu} \Lambda \to \mathbb{C}$ is a group homomorphism that factors through a lattice Λ and satisfies the conditions:
 - 1 Im $Z(E) \ge 0$, and Re Z(E) < 0 whenever Im Z(E) = 0
 - \bigoplus Every $E \in \mathcal{A}$ has an Harder-Narasimhan filtration

Let \mathcal{D} be a triangulated category.

Definition (Bridgeland

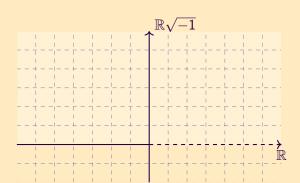
A Bridgeland stability condition (BSC) on \mathcal{D} is a pair $\sigma = (\mathcal{A}, Z)$ where:

- A is the heart of a bounded t-structure:
- $Z: K(A) \xrightarrow{\nu} \Lambda \to \mathbb{C}$ is a group homomorphism that factors through a lattice Λ and satisfies the conditions:
 - 1 Im $Z(E) \ge 0$, and Re Z(E) < 0 whenever Im Z(E) = 0
 - f Every $E \in \mathcal{A}$ has an Harder-Narasimhan filtration
 - (Support Property)

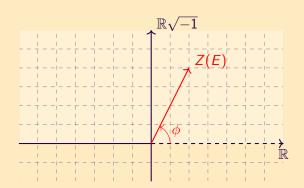
$$C_{\sigma} := \inf \left\{ rac{|Z(E)|}{\|
u(E)\|} \, : \, 0
eq E \in \mathcal{A} ext{ semistable}
ight\} > 0$$

Part I Part II Part III Part IV Part V Reference

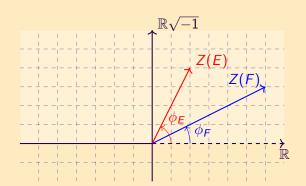
General Bridgeland Stability



Guido Neulzender IMECC Unicamp 0/28



• $Z(E) \in \mathbb{R}_{>0} \cdot e^{\pi\phi\sqrt{-1}}$ with $\phi \in (0,1]$



- $Z(E) \in \mathbb{R}_{>0} \cdot e^{\pi\phi\sqrt{-1}}$ with $\phi \in (0,1]$
- $E \in \mathcal{A}$ is (semi)stable if, for all non-trivial $F \subset E$, $\phi_F < (\leq) \phi_E$

Bridgeland's Deformation Theorem

Theorem (Bridgeland's Deformation Theorem)

The natural map

$$\mathcal{Z}: \mathsf{Stab}(X) \to \mathsf{Hom}(\Lambda, \mathbb{C}), \quad \sigma = (\mathcal{A}, Z) \mapsto Z$$

is a local homeomorphism. In particular, Stab(X) is a complex variety of dimension $rk(\Lambda)$.

Bridgeland's Deformation Theorem

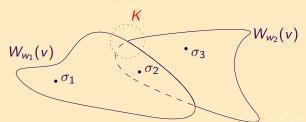
Theorem (Bridgeland's Deformation Theorem)

The natural map

$$\mathcal{Z}: \mathsf{Stab}(X) \to \mathsf{Hom}(\Lambda, \mathbb{C}), \quad \sigma = (\mathcal{A}, Z) \mapsto Z$$

is a local homeomorphism. In particular, Stab(X) is a complex variety of dimension $rk(\Lambda)$.

For any fixed class $v \in \Lambda$, Stab(X) has a natural walls-chambers structure:



 Part I
 Part III
 Part IV
 Part V
 Reference

 00000
 000
 ●000000000
 000000
 00

How to build a BSC

Let X be a smooth projective variety.

Let X be a smooth projective variety.

•
$$\mathcal{D} = \mathsf{D}^b(X)$$

Let X be a smooth projective variety.

- $\mathcal{D} = \mathsf{D}^b(X)$
- $\nu: K(A) \to \Lambda$ will be given by the Chern characters

Let X be a smooth projective variety.

- $\mathcal{D} = \mathsf{D}^b(X)$
- $\nu: K(A) \to \Lambda$ will be given by the Chern characters

$$A(X) = \begin{cases} A^{0}(X) = \mathbb{Z} \cdot [X] & \ni ch_{0} \\ A^{1}(X) \cong \operatorname{Pic}(X) & \ni ch_{1} \\ A^{2}(X) & \ni 2 \cdot ch_{2} \\ A^{3}(X) & \ni 6 \cdot ch_{3} \\ \vdots & & \\ A^{n}(X) \cong \mathbb{Z} \cdot [p] & (\text{for Fano}) \end{cases}$$

Let X be a smooth projective variety.

- $\mathcal{D} = \mathsf{D}^b(X)$
- $\nu: K(A) \to \Lambda$ will be given by the Chern characters

$$A(X) = \begin{cases} A^{0}(X) = \mathbb{Z} \cdot [X] & \ni ch_{0} \\ A^{1}(X) \cong \operatorname{Pic}(X) & \ni ch_{1} \\ A^{2}(X) & \ni 2 \cdot ch_{2} \\ A^{3}(X) & \ni 6 \cdot ch_{3} \\ \vdots & & \\ A^{n}(X) \cong \mathbb{Z} \cdot [p] & (\text{for Fano}) \end{cases}$$

For instance, if X is a Fano 3-fold with $Pic(X) = \mathbb{Z}$, then

$$\Lambda = \mathbb{Z} \times \mathbb{Z} \times \frac{1}{2} \mathbb{Z} \times \frac{1}{6} \mathbb{Z}$$

Big Problem: To find $A \subset D^b(X)$ and $Z : K(A) \to \mathbb{C}$ is done case-by-case.

- **Big Problem:** To find $\mathcal{A} \subset \mathsf{D}^b(X)$ and $Z : \mathcal{K}(\mathcal{A}) \to \mathbb{C}$ is done case-by-case. In general:
 - \bigcirc A is a *n*-tilt of Coh(X)

- **Big Problem:** To find $\mathcal{A} \subset \mathsf{D}^b(X)$ and $Z: K(\mathcal{A}) \to \mathbb{C}$ is done case-by-case. In general:
 - \bigcirc A is a *n*-tilt of Coh(X)
 - 2 $Z: K(A) \to \mathbb{C}$ should depend on all the Chern characters of X

- **Big Problem:** To find $\mathcal{A} \subset \mathsf{D}^b(X)$ and $Z: K(\mathcal{A}) \to \mathbb{C}$ is done case-by-case. In general:
 - \bigcirc \mathcal{A} is a *n*-tilt of $\mathsf{Coh}(X)$
 - 2 $Z: K(A) \to \mathbb{C}$ should depend on all the Chern characters of X
 - 3 We need some inequality to verify the Support Property

 Part I
 Part III
 Part IV
 Part V
 Reference

 00000
 000
 000000000
 000000
 00

BSC on Curves

Let X be a smooth projective curve of genus one.

BSC on Curves

Let X be a smooth projective curve of genus one.

• A = Coh(X) is the heart of the bounded t-structure

$$\mathcal{D}^{\leq 0} = \{ X \in D^b(\mathcal{A}) \mid H^i(X) = 0 \text{ for all } i > 0 \}$$
$$\mathcal{D}^{\geq 0} = \{ X \in D^b(\mathcal{A}) \mid H^i(X) = 0 \text{ for all } i < 0 \}$$

BSC on Curves

Let X be a smooth projective curve of genus one.

• A = Coh(X) is the heart of the bounded t-structure

$$\mathcal{D}^{\leq 0} = \{ X \in D^b(\mathcal{A}) \mid H^i(X) = 0 \text{ for all } i > 0 \}$$
$$\mathcal{D}^{\geq 0} = \{ X \in D^b(\mathcal{A}) \mid H^i(X) = 0 \text{ for all } i < 0 \}$$

• $Z: K(A) \to \mathbb{C}$ is given by $Z(E) = -\deg(E) + i\operatorname{rk}(E)$

BSC on Curves

Let X be a smooth projective curve of genus one.

• A = Coh(X) is the heart of the bounded t-structure

$$\mathcal{D}^{\leq 0} = \{ X \in \mathsf{D}^b(\mathcal{A}) \mid H^i(X) = 0 \text{ for all } i > 0 \}$$
$$\mathcal{D}^{\geq 0} = \{ X \in \mathsf{D}^b(\mathcal{A}) \mid H^i(X) = 0 \text{ for all } i < 0 \}$$

• $Z: K(A) \to \mathbb{C}$ is given by $Z(E) = -\deg(E) + i\operatorname{rk}(E)$

Theorem (Bridgeland)

The space of BSC is isometric to $\operatorname{Stab}(X) \cong \tilde{GL}^+(2,\mathbb{R})$, the universal covering space of $GL^+(2,\mathbb{R})$.

For simplicity, assume $Pic(X) = \mathbb{Z}$ for now on.

For simplicity, assume $Pic(X) = \mathbb{Z}$ for now on. So, for a fixed ample line bundle $H \in Pic(X)$,

$$\mathsf{ch} = (H^3 \cdot \mathsf{ch}_0, H^2 \cdot \mathsf{ch}_1, H \cdot \mathsf{ch}_2, \mathsf{ch}_3).$$

Part I Part II Part III Part IV Part V Reference

BSC on Surfaces

For simplicity, assume $Pic(X) = \mathbb{Z}$ for now on. So, for a fixed ample line bundle $H \in Pic(X)$,

$$\mathsf{ch} = (H^3 \cdot \mathsf{ch}_0, H^2 \cdot \mathsf{ch}_1, H \cdot \mathsf{ch}_2, \mathsf{ch}_3).$$

Let X be a smooth projective surface. We start with the same construction:

For simplicity, assume $Pic(X) = \mathbb{Z}$ for now on. So, for a fixed ample line bundle $H \in Pic(X)$,

$$\mathsf{ch} = (H^3 \cdot \mathsf{ch}_0, H^2 \cdot \mathsf{ch}_1, H \cdot \mathsf{ch}_2, \mathsf{ch}_3).$$

Let X be a smooth projective surface. We start with the same construction:

•
$$A = Coh(X)$$

art I Part II Part III Part IV Part V Reference

BSC on Surfaces

For simplicity, assume $Pic(X) = \mathbb{Z}$ for now on. So, for a fixed ample line bundle $H \in Pic(X)$,

$$\mathsf{ch} = (H^3 \cdot \mathsf{ch}_0, H^2 \cdot \mathsf{ch}_1, H \cdot \mathsf{ch}_2, \mathsf{ch}_3).$$

Let X be a smooth projective surface. We start with the same construction:

- $\mathcal{A} = \mathsf{Coh}(X)$
- $Z: K(A) \to \mathbb{C}$ given by $Z(E) = -\operatorname{ch}_1(E) + i\operatorname{ch}_0(E)$

For simplicity, assume $Pic(X) = \mathbb{Z}$ for now on. So, for a fixed ample line bundle $H \in Pic(X)$,

$$\mathsf{ch} = (H^3 \cdot \mathsf{ch}_0, H^2 \cdot \mathsf{ch}_1, H \cdot \mathsf{ch}_2, \mathsf{ch}_3).$$

Let X be a smooth projective surface. We start with the same construction:

- $\mathcal{A} = \mathsf{Coh}(X)$
- $Z: K(A) \to \mathbb{C}$ given by $Z(E) = -\operatorname{ch}_1(E) + i\operatorname{ch}_0(E)$

This cannot work: let $x \in X$ be a closed point, then

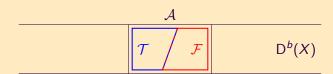
$$ch_0(k(x)) = ch_1(k(x)) = 0 \implies Z(k(x)) = 0$$

The solution: Produce a new heart $\mathcal{A}^{\#}$ by tilting \mathcal{A}

The solution: Produce a new heart $\mathcal{A}^{\#}$ by tilting \mathcal{A}

\mathcal{A}		
		$D^b(X)$

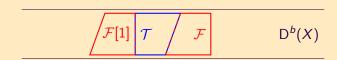
The solution: Produce a new heart $A^{\#}$ by tilting A



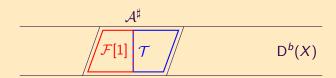
Part I Part II Part III Part IV Part V Reference

BSC on Surfaces

The solution: Produce a new heart $\mathcal{A}^{\#}$ by tilting \mathcal{A}



The solution: Produce a new heart $\mathcal{A}^{\#}$ by tilting \mathcal{A}



For $\beta \in \mathbb{R}$, consider the torsion pair

$$\mathcal{T}_{\beta} := \{ E \in \mathsf{Coh}\, X \,|\, \forall E \twoheadrightarrow G \neq 0, \, \phi_{Z}(G) > \beta \};$$

$$\mathcal{F}_{\beta} := \{ E \in \mathsf{Coh}\,X \,|\, \forall 0 \neq F \hookrightarrow E,\, \phi_{\mathcal{Z}}(F) \leq \beta \}.$$

For $\beta \in \mathbb{R}$, consider the torsion pair

$$\mathcal{T}_{\beta} := \{ E \in \mathsf{Coh} \, X \, | \, \forall E \twoheadrightarrow G \neq 0, \, \phi_{Z}(G) > \beta \};$$

$$\mathcal{F}_{\beta} := \{ E \in \mathsf{Coh}\, X \,|\, \forall 0 \neq F \hookrightarrow E, \, \phi_{Z}(F) \leq \beta \}.$$

and let $\mathcal{B}^{\beta} := \langle \mathcal{F}_{\beta}[1], \mathcal{T}_{\beta} \rangle$ be the tilt of Coh X with respect to this pair, i.e.,

For $\beta \in \mathbb{R}$, consider the torsion pair

$$\mathcal{T}_{\beta} := \{ E \in \mathsf{Coh} \, X \, | \, \forall E \twoheadrightarrow G \neq 0, \, \phi_{Z}(G) > \beta \};$$

$$\mathcal{F}_{\beta} := \{ E \in \mathsf{Coh} \, X \, | \, \forall 0 \neq F \hookrightarrow E, \, \phi_{Z}(F) \leq \beta \}.$$

and let $\mathcal{B}^{\beta} := \langle \mathcal{F}_{\beta}[1], \mathcal{T}_{\beta} \rangle$ be the tilt of Coh X with respect to this pair, i.e., $B \in \mathsf{D}^b(X)$ is in \mathcal{B}^β iff

$$\mathcal{H}^0(B) \in \mathcal{T}_{\beta}, \, \mathcal{H}^{-1}(B) \in \mathcal{F}_{\beta}, \, \text{and} \, \, \mathcal{H}^i(B) = 0 \, \, \text{for} \, \, i \neq 0, -1.$$

Definition (Twisted Chern character)

For $\beta \in \mathbb{R}$, define $\operatorname{ch}^{\beta}(E) := \exp(-\beta) \cdot \operatorname{ch}(E)$.

Definition (Twisted Chern character)

For $\beta \in \mathbb{R}$, define $\operatorname{ch}^{\beta}(E) := \exp(-\beta) \cdot \operatorname{ch}(E)$.

Take $\alpha \in \mathbb{R}^+$, define the group homomorphism

$$Z^{\mathsf{tilt}}_{lpha,eta}(B) \vcentcolon= -\left(\mathsf{ch}_2^eta(B) - rac{1}{2}lpha^2\,\mathsf{ch}_0(B)
ight) + \sqrt{-1}\,\mathsf{ch}_1^eta(B)$$

for $B \in \mathcal{B}^{\beta}$.

Definition (Twisted Chern character)

For $\beta \in \mathbb{R}$, define $\operatorname{ch}^{\beta}(E) := \exp(-\beta) \cdot \operatorname{ch}(E)$.

Take $\alpha \in \mathbb{R}^+$, define the group homomorphism

$$Z_{lpha,eta}^{ ext{tilt}}(B) \vcentcolon= -\left(\mathsf{ch}_2^eta(B) - rac{1}{2}lpha^2\,\mathsf{ch}_0(B)
ight) + \sqrt{-1}\,\mathsf{ch}_1^eta(B)$$

for $B \in \mathcal{B}^{\beta}$.

Theorem (Bridgeland)

Let X be a K3 surface. Then the pair $\sigma_{\alpha,\beta} = (\mathcal{B}^{\beta}, Z_{\alpha,\beta}^{tilt})$ is a BSC.

Proof:

Proof: it's actually quite hard.

Proof: it's actually quite hard.

• H-N filtration: easy

Proof: it's actually quite hard.

- H-N filtration: easy
- For the support property, the key is

Any $B \in \mathcal{B}^{\beta}$ satisfies

$$Q^{tilt}(B) := \operatorname{ch}_1(B)^2 - 2\operatorname{ch}_0(B)\operatorname{ch}_2(B) \ge 0.$$

BSC on 3-folds

For X a smooth projective 3-fold, we tilt again: consider the torsion pair in \mathcal{B}^{β}

$$\mathcal{T}_{lpha,eta} := \{ E \in \mathcal{B}^eta \, | \, orall E woheadsigned G
eq 0, \,
u_{lpha,eta}(G) > 0 \};$$
 $\mathcal{F}_{lpha,eta} := \{ E \in \mathcal{B}^eta \, | \, orall 0
eq F \hookrightarrow E, \,
u_{lpha,eta}(F) \leq 0 \}.$

BSC on 3-folds

For X a smooth projective 3-fold, we tilt again: consider the torsion pair in \mathcal{B}^{β}

$$\mathcal{T}_{\alpha,\beta} := \{ E \in \mathcal{B}^{\beta} \mid \forall E \twoheadrightarrow G \neq 0, \ \nu_{\alpha,\beta}(G) > 0 \};$$

$$\mathcal{F}_{\alpha,\beta} := \{ E \in \mathcal{B}^{\beta} \mid \forall 0 \neq F \hookrightarrow E, \ \nu_{\alpha,\beta}(F) \leq 0 \}.$$

then $\mathcal{A}^{\alpha,\beta} := \langle \mathcal{F}_{\alpha,\beta}[1], \mathcal{T}_{\alpha,\beta} \rangle$ is the tilt of \mathcal{B}^{β} with respect to the pair, i.e.,

BSC on 3-folds

For X a smooth projective 3-fold, we tilt again: consider the torsion pair in \mathcal{B}^{β}

$$\mathcal{T}_{\alpha,\beta} := \{ E \in \mathcal{B}^{\beta} \mid \forall E \twoheadrightarrow G \neq 0, \ \nu_{\alpha,\beta}(G) > 0 \};$$

$$\mathcal{F}_{lpha,eta} \coloneqq \{ E \in \mathcal{B}^eta \, | \, orall 0
eq F \hookrightarrow E, \,
u_{lpha,eta}(F) \leq 0 \}.$$

then $\mathcal{A}^{\alpha,\beta} := \langle \mathcal{F}_{\alpha,\beta}[1], \mathcal{T}_{\alpha,\beta} \rangle$ is the tilt of \mathcal{B}^{β} with respect to the pair, i.e., $A \in \mathsf{D}^b(X)$ is in $\mathcal{A}^{\alpha,\beta}$ iff

$$\mathcal{H}^0_{\mathcal{B}}(A)\in\mathcal{T}_{lpha,eta},\,\mathcal{H}^{-1}_{\mathcal{B}}(A)\in\mathcal{F}_{lpha,eta},\,\mathrm{e}\,\,\mathcal{H}^i_{\mathcal{B}}(A)=0\,\,\mathrm{para}\,\,i
eq0,-1.$$

BSC on 3-folds

For X a smooth projective 3-fold, we tilt again: consider the torsion pair in \mathcal{B}^{β}

$$\mathcal{T}_{lpha,eta} := \{E \in \mathcal{B}^eta \,|\, orall E woheadrightarrow G
eq 0,\,
u_{lpha,eta}(G) > 0\}; \ \mathcal{F}_{lpha,eta} := \{E \in \mathcal{B}^eta \,|\, orall 0
eq F \hookrightarrow E,\,
u_{lpha,eta}(F) \leq 0\}.$$

then $\mathcal{A}^{\alpha,\beta}:=\langle \mathcal{F}_{\alpha,\beta}[1],\mathcal{T}_{\alpha,\beta}\rangle$ is the tilt of \mathcal{B}^{β} with respect to the pair, i.e., $A\in \mathsf{D}^b(X)$ is in $\mathcal{A}^{\alpha,\beta}$ iff

$$\mathcal{H}^0_\mathcal{B}(A) \in \mathcal{T}_{lpha,eta},\,\mathcal{H}^{-1}_\mathcal{B}(A) \in \mathcal{F}_{lpha,eta},\,\mathrm{e}\,\,\mathcal{H}^i_\mathcal{B}(A) = 0\,\,\mathrm{para}\,\,i
eq 0,-1.$$

Take $s \in \mathbb{R}^+$, we define the group homomorphism

$$Z_{\alpha,\beta,s}(A) = -\operatorname{ch}_3^\beta(A) + \left(s + \frac{1}{6}\right)\alpha^2\operatorname{ch}_1^\beta(A) + \sqrt{-1}\left(\operatorname{ch}_2^\beta(A) - \frac{1}{2}\alpha^2\operatorname{ch}_0(A)\right)$$

BSC on 3-folds

Theorem (Bayer, Macrì, Toda)

The pair $\sigma_{\alpha,\beta,s}=(\mathcal{A}^{\alpha,\beta},Z_{\alpha,\beta,s})$ is a BSC on X if it satisfies the generalized Gieseker-Bogomolov inequality.

BSC on 3-folds

Theorem (Bayer, Macrì, Toda)

The pair $\sigma_{\alpha,\beta,s} = (A^{\alpha,\beta}, Z_{\alpha,\beta,s})$ is a BSC on X if it satisfies the generalized Gieseker-Bogomolov inequality.

Conjecture (generalized Gieseker-Bogomolov)

Let X be a Fano threefold, if $B \in \mathcal{B}^{\beta}$ is $Z_{\alpha,\beta}^{tilt}$ -semistable, then

$$Q_{\alpha,\beta}(B) = \alpha^2 Q^{tilt}(B) + 4 \operatorname{ch}_2^{\beta}(B)^2 - 6 \operatorname{ch}_1^{\beta}(B) \operatorname{ch}_3^{\beta}(B) \ge 0.$$

BSC on 3-folds

Theorem (Bayer, Macrì, Toda)

The pair $\sigma_{\alpha,\beta,s} = (A^{\alpha,\beta}, Z_{\alpha,\beta,s})$ is a BSC on X if it satisfies the generalized Gieseker-Bogomolov inequality.

Conjecture (generalized Gieseker-Bogomolov)

Let X be a Fano threefold, if $B \in \mathcal{B}^{\beta}$ is $Z^{tilt}_{\alpha,\beta}$ -semistable, then

$$Q_{\alpha,\beta}(B) = \alpha^2 Q^{tilt}(B) + 4 \operatorname{ch}_2^{\beta}(B)^2 - 6 \operatorname{ch}_1^{\beta}(B) \operatorname{ch}_3^{\beta}(B) \ge 0.$$

• Proven by Li for Fano threefolds with $Pic(X) = \mathbb{Z}$

BSC on 3-folds

Theorem (Bayer, Macrì, Toda)

The pair $\sigma_{\alpha,\beta,s} = (A^{\alpha,\beta}, Z_{\alpha,\beta,s})$ is a BSC on X if it satisfies the generalized Gieseker-Bogomolov inequality.

Conjecture (generalized Gieseker-Bogomolov)

Let X be a Fano threefold, if $B \in \mathcal{B}^{\beta}$ is $Z^{tilt}_{\alpha,\beta}$ -semistable, then

$$Q_{\alpha,\beta}(B) = \alpha^2 Q^{tilt}(B) + 4 \operatorname{ch}_2^{\beta}(B)^2 - 6 \operatorname{ch}_1^{\beta}(B) \operatorname{ch}_3^{\beta}(B) \ge 0.$$

- Proven by Li for Fano threefolds with $Pic(X) = \mathbb{Z}$
- False for $X = \mathsf{Bl}_n(\mathbb{P}^3)$ (Schmidt, 2017)

Asymptotic stability: the tool

Definition (Jardim, Maciocia, Martinez)

Let $\gamma:[0,\infty)\to\mathbb{H}$ be a path, an object $A\in\mathsf{D}^b(X)$ is asymptotic $Z_{\alpha,\beta,s}$ -(semi)stable along γ if, for a fixed s>0, the following conditions hold:

Asymptotic stability: the tool

Definition (Jardim, Maciocia, Martinez)

Let $\gamma:[0,\infty)\to\mathbb{H}$ be a path, an object $A\in\mathsf{D}^b(X)$ is asymptotic $Z_{\alpha,\beta,s}$ -(semi)stable along γ if, for a fixed s>0, the following conditions hold:

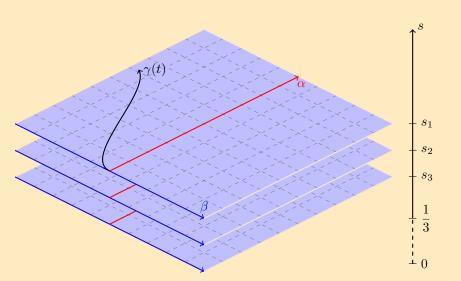
• there exists $t_0 > 0$ such that $A \in \mathcal{A}^{\gamma(t)}$ for all $t > t_0$;

Asymptotic stability: the tool

Definition (Jardim, Maciocia, Martinez)

Let $\gamma:[0,\infty)\to\mathbb{H}$ be a path, an object $A\in\mathsf{D}^b(X)$ is asymptotic $Z_{\alpha,\beta,s}$ -(semi)stable along γ if, for a fixed s>0, the following conditions hold:

- 1 there exists $t_0 > 0$ such that $A \in \mathcal{A}^{\gamma(t)}$ for all $t > t_0$;
- 2 there exists $t_1 > t_0$ such that, for all $t > t_1$, $A \in \mathcal{A}^{\gamma(t)}$ is $Z_{\gamma(t),s}$ -(semi)stable.



For a fixed s > 0 and $ch_0 \neq 0$, the plane is divided into three regions:

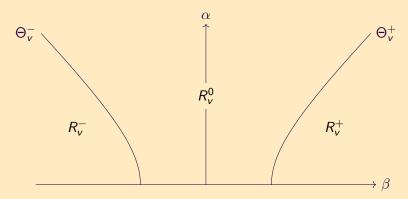


Figure: Numerical wall for v = (2, 0, -3, 0).

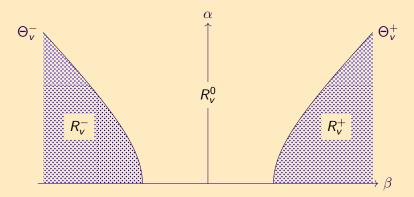


Figure: Numerical wall for v = (2, 0, -3, 0).

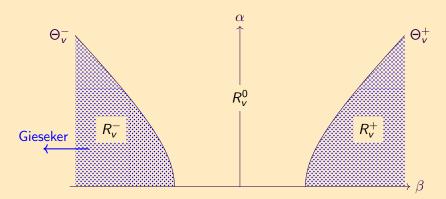


Figure: Numerical wall for v = (2, 0, -3, 0).

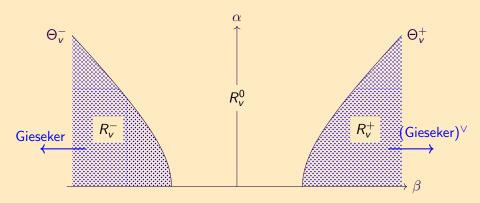


Figure: Numerical wall for v = (2, 0, -3, 0).

For a fixed s > 0 and $ch_0 \neq 0$, the plane is divided into three regions:

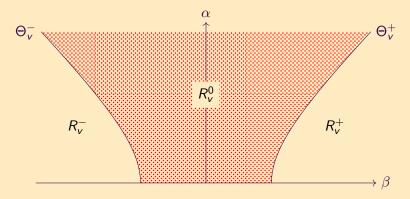


Figure: Numerical wall for v = (2, 0, -3, 0).

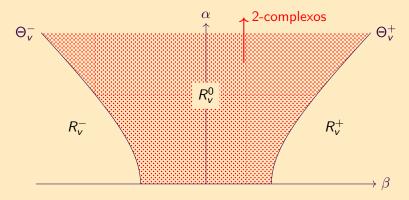


Figure: Numerical wall for v = (2, 0, -3, 0).

Instead, for $ch_0 = 0$, the plane is divided into two regions:

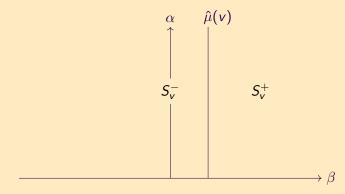


Figure: Numerical wall for v = (0, 1, 1, 0).

Instead, for $ch_0 = 0$, the plane is divided into two regions:

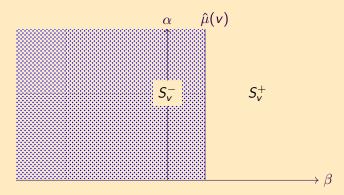


Figure: Numerical wall for v = (0, 1, 1, 0).

Instead, for $ch_0 = 0$, the plane is divided into two regions:

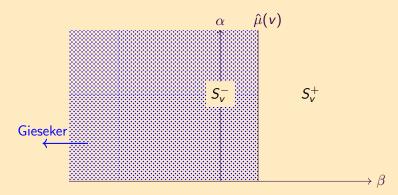


Figure: Numerical wall for v = (0, 1, 1, 0).

Instead, for $ch_0 = 0$, the plane is divided into two regions:

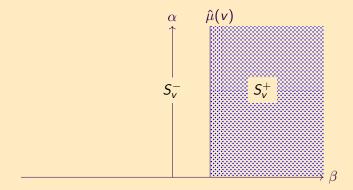


Figure: Numerical wall for v = (0, 1, 1, 0).

Instead, for $ch_0 = 0$, the plane is divided into two regions:

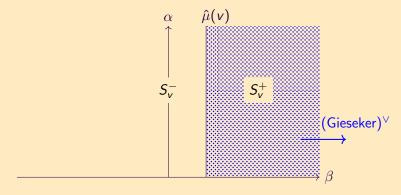


Figure: Numerical wall for v = (0, 1, 1, 0).

Instead, for $ch_0 = 0$, the plane is divided into two regions:

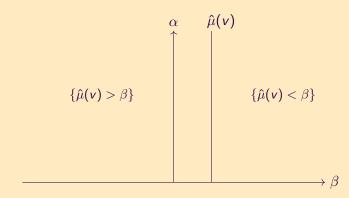


Figure: Numerical wall for v = (0, 1, 1, 0).

Instead, for $ch_0 = 0$, the plane is divided into two regions:

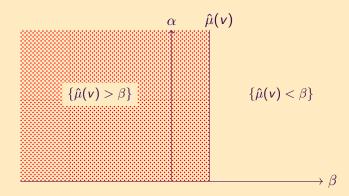


Figure: Numerical wall for v = (0, 1, 1, 0).

Instead, for $ch_0 = 0$, the plane is divided into two regions:

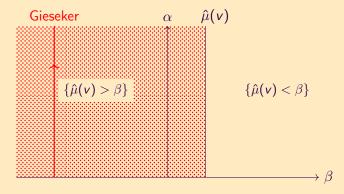


Figure: Numerical wall for v = (0, 1, 1, 0).

Instead, for $ch_0 = 0$, the plane is divided into two regions:

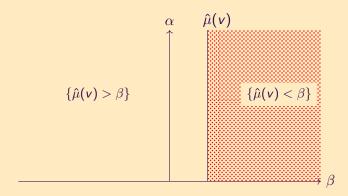


Figure: Numerical wall for v = (0, 1, 1, 0).

Instead, for $ch_0 = 0$, the plane is divided into two regions:

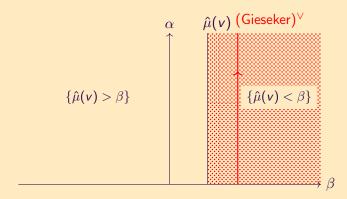


Figure: Numerical wall for v = (0, 1, 1, 0).

Instead, for $ch_0 = 0$, the plane is divided into two regions:

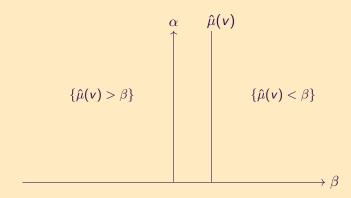


Figure: Numerical wall for v = (0, 1, 1, 0).

Fun fact: This result is actually mine! :-)

 Part II
 Part III
 Part IV
 Part V
 Reference

 000
 000000000
 00000
 ●0

Where do we go from here?

Where do we go from here?

• Going for higher dimension is hard! For \mathbb{P}^n , we know $\operatorname{Stab}(X)$ in non-empty (Mu, 2020)

Part II Part IV Part V Reference

Where do we go from here?

- Going for higher dimension is hard! For \mathbb{P}^n , we know $\operatorname{Stab}(X)$ in non-empty (Mu, 2020)
- There is no general construction for cubic-fourfolds Yet, one can define BSC on it's Kusnetsov component! (Bayer, Lahoz, Macrì, Stellari)

Where do we go from here?

- Going for higher dimension is hard! For \mathbb{P}^n , we know $\operatorname{Stab}(X)$ in non-empty (Mu, 2020)
- There is no general construction for cubic-fourfolds
 Yet, one can define BSC on it's Kusnetsov component!
 (Bayer, Lahoz, Macrì, Stellari)
- Applications:
 Higher bound for globals sections on curves
 (Fayzbakhsh)

Thank you for watching!

References I

- Bayer, Arend et al. (2023). "Stability Conditions on Kuznetsov Components". In: Annales scientifiques de l'École Normale Supérieure 56.2, pp. 517–570. ISSN: 00129593, 18732151. DOI: 10.24033/asens.2539. arXiv: 1703.10839 [math]. (Visited on 08/17/2025).
 - Bridgeland, Tom (2002). "Stability Conditions on Triangulated Categories". In: DOI: 10.48550/ARXIV.MATH/0212237. (Visited on 08/13/2023).

References II

10.48550/arXiv.1810.10825. arXiv: 1810.10825 [math]. (Visited on 05/09/2025).

Huybrechts, Daniel and Manfred Lehn (May 2010). *The Geometry of Moduli Spaces of Sheaves*. 2nd ed. Cambridge University Press. ISBN: 978-0-521-13420-0 978-0-511-71198-5. DOI:

10.1017/CB09780511711985. (Visited on 03/19/2023).

Jardim, Marcos and Antony Maciocia (Dec. 2022). "Walls and Asymptotics for Bridgeland Stability Conditions on 3-Folds". In: *Épijournal de Géométrie Algébrique* Volume 6, p. 6819. ISSN: 2491-6765. DOI: 10.46298/epiga.2022.6819. arXiv: 1907.12578 [math]. (Visited on 08/08/2023).

References III

Jardim, Marcos, Antony Maciocia, and Cristian Martinez (Aug. 2023). "Vertical Asymptotics for Bridgeland Stability Conditions on 3-Folds". In: *International Mathematics Research Notices* 2023.17, pp. 14699–14751. ISSN: 1073-7928, 1687-0247. DOI: 10.1093/imrn/rnac236. (Visited on 10/10/2023).

- Li, Chunyi (Nov. 2018). "Stability Conditions on Fano Threefolds of Picard Number 1". In: Journal of the European Mathematical Society 21.3, pp. 709–726. ISSN: 1435-9855, 1435-9863. DOI: 10.4171/jems/848. (Visited on 07/16/2025).
- Macrì, Emanuele and Benjamin Schmidt (Oct. 2019). *Lectures on Bridgeland Stability*. arXiv: 1607.01262 [math]. (Visited on 11/24/2022).

References IV

— (Dec. 2022). "Zero Rank Asymptotic Bridgeland Stability". In: Journal of Geometry and Physics 182, p. 104668. ISSN: 0393-0440.

DOI: 10.1016/j.geomphys.2022.104668. (Visited on 03/23/2025).