NORMAL BUNDLES & FULLY FAITHFUL FM - TRANSFORMS ERIK NIKOLOV - DOGS-TALK 29/10 X, Y smooth projective variefies (over some field k) of dimensions $d_X \leq d_y$. Question: D'(X) - D'(Y) ? Want to find a fully faithful triangulated functor $D^{b}(X) \xrightarrow{\Phi} D^{b}(Y)$, i.e. $\operatorname{Hom}_{X}^{*}(-,-) \xrightarrow{\sim} \operatorname{Hom}_{Y}^{*}(\overline{\mathfrak{L}}(-), \overline{\mathfrak{L}}(-))$. (automatically natural) Game plan: 1) Remarks on fully-faithfulness Hom' (-,-) = Ext' (-,-) $:= u Hom_{D'(k)}(-1(-1)[i])^{k}$ 2) First examples = Hⁱ(RHom(-,-)) (3) A general criterion (4) Example : (Possibly singular) blow-ups (i) fully faithful (=) equivalence onto a full triangulated (= essentially injective) subcategory (1) Remarks (ii) If I has both adjoints (1/): Can be checked on spanning classes like {∂x}xcX closed or {K^{@i}}_{i∈Z}, & ample like bundle on X. $A = \left(\begin{array}{c} A \end{array} \right)^{\perp} = A^{\perp} \left(\begin{array}{c} A \end{array} \right)$

(iii) If dx < dy, then D'(X) = D'(4) will not be an equivalence ! (Eximitences of derived categories preserve serve-functors =) dimensions)
(iv) Y(smooth) projective => 0°(4) saturated (0°+(4))
=) any full triang subcatigory is admissible
=> I induces semi-orthogonal decomposition
$\langle \Xi(D^{s}(X)), \Box \Xi(D^{s}(X)) \rangle$
$\overline{\Xi(D^{S}(X))}$ adm. =) triangulated
The (Orlov) X19 Sm. proj., E fully faithful + triangulated
=) E is of Fonrier - Muleai type 1 (limits choice of)
Today = L. (E&p"(-)) in the situation PL Kry where
p is smooth + proper, i closed embedding, E ∈ Coh(V) loc. free.
Note: E is a Fourier-Mulai transform with land t. E!
(projection tormina)

2) First examples (i) $d_V = d_Y$, e.g. $V = IP(\Sigma) \xrightarrow{P} X$ with Σ locally free (or iterated versions $P(\Sigma_n) \to IP(\Sigma_{n-1}) \to X$)
Claim: All the functors p [*] (-) & Op(i) from Orlov's projective bundle formula are fully faithful! Proof: Look at Hom-spaces: Proof: Look at Hom-spaces:
$\begin{array}{llllllllllllllllllllllllllllllllllll$
(ii) dy=dx, i.e. X ~ Y closed embedding. Non-derived in: Coh(X) -> Coh(Y) is fully faithful, but this becomes false for the derived is D ^b (X) -> D ^b (Y) !

Closed embeddings are in general not fully faithful: If $A = B = \partial_{X_1}$ Hi(∂_X) = O for into : (e.g. $X = Speck \rightarrow Y$) $0 = H^{i}(\partial_{X}) = Hom_{\chi}^{i}(\partial_{X_{i}}\partial_{X_{j}}) \xrightarrow{t} Hom_{\chi}^{i}(\iota_{*}\partial_{X_{j}}, \iota_{*}\partial_{X_{j}}) \neq 0$ Using Li -11, -11: Will be related to cohomology of normal bundle & wedge powers NWX14 ! Need not Think of $E_{x+1}(L_{x}\partial_{x}, L_{x}\partial_{x}) = \Lambda^{T}T_{x}Y$ ± 0 vanish. $(iii) dx = 0, e.g. V \rightarrow Y:$ F= μp° fully faithful (Test on k[0] ∈ D^b(Speck)) Lady is an exceptional 66 ject in 0°(4) Speck $Hom_{y}(i,\partial_{y},i,\partial_{y}) = k[0]$ Claim la the case of a sm. curve V= C in a sufface Y=S (De exceptional in D'14) () Crotional curve, C² = -1 (E) E fully faithful) (exceptional curve of Arst kind)

Hence on a minimal susface, there are no exceptional objects of the form Lode, CES curve. Prost Hom's (1. Dc, 1. Dc) = Hom'c (Li'L, Dc, Dc) complex, not only sheaf Ez = Homb (Lª, "1, Dc, Dc) (spectral sequence) =) get loc. free resolution of os(-c) -) osfri, de -) o Since C-15 is Cathier Ingeneral : C=V reduced (ci juside 4 smooth $=) \ \left[\left[\partial_{s}(-c) - \partial_{s} \right] \right]$ =) locally 7 V = V(S), SE H⁰(E) regular section, Kostal complex: resolution 0-1 A CE -> _> E -> Dy -> (, dv+0) $= \left[\partial_{\mathcal{L}} (-\mathcal{L}) - \partial_{\mathcal{L}} \right]$ Neis Nory = Elv, E = Ostc) here! $\int \partial_c , q = 0$ =) $L^{q} i^{*} L, \partial_{c} = \sqrt{Nc} i s, \quad q = 1$ In general: Liticia = 1 twig $10, q^2 2$ (Huybrechts FM-Trafes §11)

=) The spectral sequence approximating Homis (1, De, 1, De)
becomes $4.0 \cdot 0 \cdot 0$ $H^{1}(\mathcal{M}_{LS}) \cdot 0$ (dim $C = 1$)
$H_{\sigma}(g^{r}) \xrightarrow{H_{\sigma}(g^{r})} b$
=) $Hom'_{S}(i, \partial_{C}, i, \partial_{C}) = \begin{cases} H^{\circ}(\partial_{C}), i=0 & \\ H^{\circ}(\mathcal{N}) \oplus H^{\circ}(\partial_{C}), i=1 & \\ H^{\circ}(\mathcal{N}), i=2 & \\ H^{\circ}(\mathcal{N}), i$
Now $h^{\circ}(\partial_{c}) = 1 = 1$ (connected, $h^{\gamma}(\partial_{c}) = g(c) = 0 = 1$ ($\leq P^{\gamma}$,
$\mathcal{N}_{CIS} = \partial(i)$, $i = deg \mathcal{N}_{CIS} = C^2$, $H^*(\mathcal{N}_{CIS}) = 0$ =) $i = -1$.
Cor For Blow-Ups of Smooth Surfaces in a point, the exceptional divisor is an exceptional object.

3 Main Prop.	Consider a correspondence USY as before, and a
(A general	FM-Trato = ((Eop"(-)), with & locally free
	Then I is fully faithful, provided that on every
	Fibre of P' · Homy (E, E) = Leid, E = $\mathcal{E}(V_{x})$
	$\begin{array}{c} \gamma \\ \cdot \\ H^{P}(V_{x}, \Lambda^{2}(\mathcal{N}_{U/Y}) _{V_{x}} \otimes \mathbb{E} \otimes \mathbb{E}^{*}) = 0 \\ _{\mathcal{V}_{y}} \\ \psi_{au} is hes \\ \mathcal{V}_{y} \\ \mathcal{V}_{y}$
{×}) ~ X	V = y for E = line bundle
Proof ingredien	its . Use Bondal - Orlov - criterion to prove fully -
· · · · · · · · · · · · · · · · · · ·	faithfulness of & on spanning class ¿Ox (xEX) only in certain degrees
· Homy (Z(D)), €(∂x)) = Homy (j.E, j.E), use j j, approximate
· 219(j'j, E) =	E & H ^q (j j, D _{Vk}) = E & H ^{q-c} (Lj j, Q _x) & let N _{Vkry}
see previous als	1 - 4 NVX14) use s.e.s. On der - NVX14 - NV14 / VX

Remarkes (i) There is a similar criterion for Semi-orthogonality, see my arXis-preprint. (ii) It is not clear to me why the converse of the statement should hold. Let me know if you have a proof in mind! 4 <u>Example</u> Consider a blow-up st X (potentially singular) in a smooth center 7. Then we have a castesian square Assume that EyX-77 has fibres all iso morphic to P^{c-7}, so that Op(-k) = NEyX/X, k 70. Nyix locally free, Symidyz = D Byd+, EyX = P(Nyix), pc-1-bundle with C= codim (Y,X) $(If Y \in X)$ Then E is fully faithful if C-1 2 h 2 1.

Remark: Part of Orlov's blow-up formula where XiY are smooth, k=1, c=codim (4,X)>2.
Proof of fully faithfulness: Look at fibres + the two conditions:
• Hompen (Lipen, Zipen) = H° (ipen, D) = k
• $H^{p}(V_{x}, \Lambda^{q}(\mathcal{N}_{V,Y})) \otimes \mathbb{E} \otimes \mathbb{E}^{\vee}) = H^{p}(\mathbb{P}^{-\gamma}, \Lambda^{q}\partial(-\omega)) = ?$
$q = 0$: $H^{\circ}(\mathbb{P}^{l-1}, \mathcal{D}) = k[\mathcal{D}]$ (see above)
q=1 : H*(IP(-1, O(-4)) at most concentrated in degrees
0 os C-1.
Vanishes if -k<0 or -k = - (c-1).
Example: Hibert scheme X ^[2] of two points, blowup of X ⁽²⁾ =X ² /S2:
$P(\mathcal{N}_{x}) \xrightarrow{\mathcal{L}} X^{[1]} \qquad \mathcal{N}_{P(\mathcal{N}_{x})/X^{[1]}} \cong \mathcal{O}_{P}(-2)$
If (] [blow-up =) Db(x) () Db(x ⁽²⁾) if dim X > 3.
X (2) (More such functors are known, see work of Krug, Ploog, Sosna)